Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Conductive Heat Transfer

Conductive heat transfer takes place in a solid if there is a temperature gradient.

Sponsored Links

Conduction as heat transfer takes place if there is a temperature gradient in a solid or stationary fluid medium.

With conduction energy transfers from more energetic to less energetic molecules when neighboring molecules collide. Heat flows in direction of decreasing temperatures since higher temperatures are associated with higher molecular energy.

Heat transfer through a surface or wall

Conductive heat transfer can be expressed with "Fourier's Law"

q = (k / s) A dT  

   = U A dT                               (1)


q = heat transfer (W, J/s, Btu/hr)

k = Thermal Conductivity of material (W/m K or W/m oC, Btu/(hr oF ft2/ft))

s = material thickness (m, ft)

A = heat transfer area (m2, ft2)

U = k / s

   =  Coefficient of Heat Transfer (W/(m2K), Btu/(ft2 h oF)

dT = t1 - t2

    = temperature gradient - difference - over the material (oC, oF)

Conductive heat transfer

Example - Conductive Heat Transfer

A plane wall is constructed of solid iron with thermal conductivity 70 W/moC. Thickness of the wall is 50 mm and surface length and width is 1 m by 1 m. The temperature is 150 oC on one side of the surface and 80 oC on the other.

The conductive heat transfer through the wall can be calculated

q = [(70 W/m oC) / (0.05 m)] [(1 m) (1 m)] [(150 oC) - (80 oC)]

    = 98000 (W)

    = 98 (kW)

Conductive Heat Transfer Calculator.

This calculator can be used to calculate conductive heat transfer through a wall. The calculator is generic and can be used for both metric and imperial units as long as the use of units is consistent.

k - thermal conductivity (W/(mK), Btu/(hr oF ft2/ft))

A - area (m2, ft2)

t1 - temperature 1 (oC, oF)

t2 - temperature 2 (oC, oF)

s - material thickness (m, ft)

Conductive Heat Transfer through a Plane Surface or Wall with Layers in Series

The heat conducted through a wall with layers in thermal contact can be calculated as

q = dT A / ((s1 / k1) + (s2 / k2) + ... + (sn / kn))                                (2)


dT = t1 - t2

    = temperature difference between inside and outside wall (oC, oF)

Note that heat resistance due to surface convection and radiation is not included in this equation. Convection and radiation in general have major impact on the overall heat transfer coefficients

Example - Conductive Heat Transfer through a Furnace Wall 

A furnace wall of 1 m2 consist of 1.2 cm thick stainless steel inner layer covered with 5 cm outside insulation layer of insulation board. The inside surface temperature of the steel is 800 K and the outside surface temperature of the insulation board is 350 K. The thermal conductivity of the stainless steel is 19 W/(m K) and the thermal conductivity of the insulation board is 0.7 W/(m K)

The conductive heat transport through the layered wall can be calculated as

q = [(800 K) - (350 K)] (1 m2) / ([(0.012 m) / (19 W/(m K))] + [(0.05 m) / (0.7 W/(m K))])

          = 6245 (W)

          = 6.25 kW

Thermal Conductivity Units

  • Btu/(h ft2 oF/ft)
  • Btu/(h ft2 oF/in)
  • Btu/(s ft2 oF/ft)
  • Btu in)/(ft² h °F)
  • MW/(m2 K/m)
  • kW/(m2 K/m)
  • W/(m2 K/m)
  • W/(m2 K/cm)
  • W/(cm2 oC/cm)
  • W/(in2 oF/in)
  • kJ/(h m2 K/m)
  • J/(s m2 oC/m)
  • kcal/(h m2 oC/m)
  • cal/(s cm2 oC/cm)

  • 1 W/(m K) = 1 W/(m oC) = 0.85984 kcal/(h m oC) = 0.5779 Btu/(ft h oF) = 0.048 Btu/(in h oF) = 6.935 (Btu in)/(ft² h °F)
Sponsored Links

Related Topics

Heat Loss and Insulation

Heat loss from pipes, tubes and tanks - with and without insulation - foam, fiberglass, rockwool and more.


Heat transfer and heat loss from buildings and technical applications - heat transfer coefficients and insulation methods to reduce energy consumption.


Thermodynamics of steam and condensate systems.


Work, heat and energy systems.

Related Documents

Steel Pipes - Heat Loss Diagram

Heat loss from steel pipes and tubes - dimensions 1/2 to 12 inches.

Sponsored Links

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp from the SketchUp Pro Sketchup Extension Warehouse!

About the Engineering ToolBox!


We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.


This page can be cited as

  • The Engineering ToolBox (2003). Conductive Heat Transfer. [online] Available at: [Accessed Day Month Year].

Modify access date.

. .


3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

6 6

Sponsored Links