Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Mass vs. Weight

Mass vs. weight - the Gravity Force.

Mass and Weight are two often misused and misunderstood terms in mechanics and fluid mechanics.

The fundamental relation between mass and weight is defined by Newton's Second Law . Newton's Second Law can be expressed as

F = m a (1)

where

F = force (N, lbf )

m = mass (kg, slugs )

a = acceleration (m/s2, ft/s2)

Mass

Mass is a measure of the amount of material in an object, being directly related to the number and type of atoms present in the object. Mass does not change with a body's position, movement or alteration of its shape, unless material is added or removed.

  • an object with mass 1 kg on earth would have the same mass of 1 kg on the moon

Mass is a fundamental property of an object, a numerical measure of its inertia and a fundamental measure of the amount of matter in the object.

  • mass electron 9.1095 10 -31 kg
  • mass proton 1.67265 10 -27 kg
  • mass neutron 1.67495 10 -27 kg

Weight

Weight - force and acceleration of gravity

Weight is the gravitational force acting on a body mass. The generic expression of Newton's Second Law (1) can be transformed to express weight as a force by replacing the acceleration - a - with the acceleration of gravity - g - as

F g = m a g (2)

where

F g = gravitational force - or weight (N, lbf )

m = mass (kg, slugs (lbm ))

a g = acceleration of gravity on earth (9.81 m/s2, 32.17405 ft/s2)

Example - The Weight of a Body on Earth vs. Moon

The acceleration of gravity on the moon is approximately 1/6 of the acceleration of gravity on the earth. The weight of a body with mass 1 kg on the earth can be calculated as

F g_ earth = (1 kg) (9.81 m/s2)

= 9.81 N

The weight of the same body on the moon can be calculated as

F g_ < moon = (1 kg) ( (9.81 m/s2) / 6)

= 1.64 N

The handling of mass and weight depends on the systems of units used. The most common unit systems are

  • the International System - SI
  • the British Gravitational System - BG
  • the English Engineering System - EE

One newton is

  • ≈ the weight of one hundred grams - 101.972 gf (g F ) or 0.101972 kgf (kg F or kilopond - kp (pondus is latin for weight))
  • ≈ halfway between one-fifth and one-fourth of a pound - 0.224809 lb or 3.59694 oz

The International System - SI

In the SI system the mass unit is the kg and since the weight is a force - the weight unit is the Newton ( N ). Equation (2) for a body with 1 kg mass can be expressed as:

F g = (1 kg) (9.807 m/s2)

= 9.807 (N)

where

9.807 m/s2= standard gravity close to earth in the SI system

As a result:

  • a 9.807 N force acting on a body with 1 kg mass will give the body an acceleration of 9.807 m/s2
  • a body with mass of 1 kg weights 9.807 N

The Imperial British Gravitational System - BG

The British Gravitational System (Imperial System) of units is used by engineers in the English-speaking world with the same relation to the foot - pound - second system as the meter - kilogram - force second system (SI) has to the meter - kilogram - second system. For engineers who deals with forces, instead of masses, it's convenient to use a system that has as its base units length, time, and force , instead of length, time and mass .

The three base units in the Imperial system are foot, second and pound-force .

In the BG system the mass unit is the slug and is defined from the Newton's Second Law (1) . The unit of mass, the slug , is derived from the pound-force by defining it as the mass that will accelerate with 1 foot per second per second when a 1 pound-force acts upon it:

1 lbf = (1 slug) (1 ft/s2)

In other words, 1 lbf (pound-force) acting on 1 slug of mass will give the mass an acceleration of 1 ft/s 2.

The weight (force) of the mass can be calculated from equation (2) in BG units as

F g (lbf ) = m (slugs) a g (ft/s2)

With standard gravity - a g = 32.17405 ft/s2 - the weight (force) of 1 slug mass can be calculated as

F g =  (1 slug) ( 32.17405 ft/s2)

32.17405 lbf

The English Engineering System - EE

In the English Engineering system of units the primary dimensions are are force, mass, length, time and temperature. The units for force and mass are defined independently

  • the basic unit of mass is pound-mass (lbm )
  • the unit of force is the pound (lb) alternatively pound-force (lbf ).

In the EE system 1 lbf of force will give a mass of 1 lbm a standard acceleration of 32.17405 ft/s2.

Since the EE system operates with these units of force and mass, the Newton's Second Law can be modified to

F = m a / g c (3)

where

g c = a proportionality constant

or transformed to weight (force)

F g = m a g / g c (4)

The proportionality constant g c makes it possible to define suitable units for force and mass. We can transform (4) to

1 lbf = (1 lbm ) (32.174 ft/s2) / g c

or

g c = (1 lbm ) (32.174 ft/s2) / (1 lbf )

Since 1 lbf gives a mass of 1 lbm an acceleration of 32.17405 ft/s2 and a mass of 1 slug an acceleration of 1 ft/s2, then

1 slug = 32.17405 lbm

Example - Weight versus Mass

The mass of a car is 1644 kg . The weight can be calculated:

F g = (1644 kg) (9.807 m/s2)

= 16122.7 N

= 16.1 kN

- there is a force (weight) of 16.1 kN between the car and the earth.

  • 1 kg gravitation force = 9.81 N = 2.20462 lbf

Weight Converter

Kg to lb Converter

Kg to lb converter

Download and print kg to lb Converter!

Related Topics

  • Basics

    Basic engineering data. SI-system, unit converters, physical constants, drawing scales and more.
  • Fluid Mechanics

    The study of fluids - liquids and gases. Involving velocity, pressure, density and temperature as functions of space and time.
  • Mechanics

    The relationships between forces, acceleration, displacement, vectors, motion, momentum, energy of objects and more.
  • Statics

    Forces acting on bodies at rest under equilibrium conditions - loads, forces and torque, beams and columns.

Related Documents

Search

Search is the most efficient way to navigate the Engineering ToolBox.

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with older versions of the amazing SketchUp Make and the newer "up to date" SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp Make/Pro from the Extension Warehouse !

Translate this Page

Translate this page to Your Own Language .

About the Engineering ToolBox!

Privacy Policy

We don't collect information from our users. More about

We use a third-party to provide monetization technologies for our site. You can review their privacy and cookie policy here.

You can change your privacy settings by clicking the following button: .

Citation

This page can be cited as

  • The Engineering ToolBox (2004). Mass vs. Weight. [online] Available at: https://www.engineeringtoolbox.com/mass-weight-d_589.html [Accessed Day Month Year].

Modify the access date according your visit.

3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Unit Converter

















































8.21.8

.