Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Trigonometric Functions

Sine, cosine and tangent - the natural trigonometric functions.

Sponsored Links

Triangle - natural trigonometric functions

Natural trigonometric functions are expressed as

sin(θd) = a / c

            = 1 / csc(θd)

            = cos(π / 2 - θr)                       (1)

where 

θd = angle in degrees

θr = angle in radians

a

c

cos(θd) = b / c

             = 1 / sec(θd)

             = sin(π / 2 - θr)                       (2)

b

c

tan(θd) = a / b

             = 1 / cot(θd)            

             = sin(θd) / cos(θd)            

             = cot(π / 2 - θr)                         (3)

a

b

cot(θd) = 1 / tan(θd)

             = cos(θd) / sin(θd)

             = tan(π / 2 - θr)                          (4)

θ (degrees)

Trigonometric functions ranging 0 to 90 degrees are tabulated below:

Trigonometric functions - sine cosine tangent

Inverse functions

arcsin (a) = sin-1 (a)                            (1a)

arccos (a) = cos-1 (a)                           (2a)

arctan (a) = tan-1 (a)                           (3a)

Addition Formula

sin (a ± b) = sin (a) cos (b) ± cos (a) sin (b)                             (5)

cos (a ± b) = cos (a) cos (b) ± sin (a) sin (b)                            (5b)

tan (a ± b) = (tan(a) ± tan(b)) / (1 ± tan(a) tan(b))                         (5c)

Sum and Difference Formula

sin (a) + sin (b) = 2 sin ((a + b)/2) cos ((a + b)/2)                          (6)

sin (a) - sin (b) = 2 cos ((a + b)/2) sin ((a - b)/2)                          (6b)

cos (a) + cos (b) = 2 cos ((a + b)/2) cos ((a - b)/2)                          (6c)

cos (a) - cos (b) = - 2 sin ((a + b)/2) sin ((a - b)/2)                         (6d)

tan (a) + tan (b) = sin (a + b) / (cos (a) cos (b))                       (6e)

tan (a) - tan (b) = sin (a - b) / (cos (a) cos (b))                    (6f)

Product Formula

2 sin (a) cos (b) = sin (a - b) + sin (a + b)                       (7)

2 sin (a) sin (b) = cos (a - b) - cos (a - b)                      (7b)

2 cos (a) cos (b) = cos (a - b) + cos (a + b)                      (7c)

Multiple Angle and Powers Formula

sin (2 a) = 2 sin (a) cos (a)                        (8)

cos (2 a) = cos2 (a) - sin2 (a)                        (8b)

cos (2 a) = 2 cos2 (a) - 1                          (8c)

cos (2 a) = 1 - 2 sin2 (a)                        (8d)

tan (2 a) = 2 tan a / (1 - tan2 (a))                     (8e)

sin2 (a) + cos2 (a) = 1                         (8f)

sec2 (a) = tan2 (a) + 1                         (8g)

Special Triangles

Special triangles - trigonometric functions

Trigonometric Values

sin(-θd) = - sin(θd)                 (9a)

where 

θd = angle in degrees

sin(90° + θd) = cos(θd)           (9b)

sin(90° - θd) = cos(θd)           (9c)

sin(180° + θd) = - sin(θd)           (9d)

sin(180° - θd) = sin(θd)           (9e)

sin(270° + θd) = - cos(θd)           (9f)

sin(270° - θd) = - cos(θd)          (9g)

sin(360° + θd) = sin(θd)          (9h)

sin(360° - θd) = - sin(θd)          (9h)

cos(-θd) = cos(θd)                (10a)

cos(90° + θd) = - sin(θd)           (10b)

cos(90° - θd) = sin(θd)          (10c)

cos(180° + θd) = - cos(θd)          (10d)

cos(180° - θd) = - cos(θd)          (10e)

cos(270° + θd) = sin(θd)           (10f)

cos(270° - θd) = - sin(θd)          (10g)

cos(360° + θd) = cos(θd)           (10h)

cos(360° - θd) = cos(θd)           (10h)

tan(-θd) = - tan(θd)                (11a)

tan(90° + θd) = - cot(θd)           (11b)

tan(90° - θd) = cot(θd)           (11c)

tan(180° + θd) = tan(θd)           (11d)

tan(180° - θd) = - tan(θd)            (11e)

tan(270° + θd) = - cot(θd)           (11f)

tan(270° - θd) = cot(θd)           (11g)

tan(360° + θd) = tan(θd)            (11h)

tan(360° - θd) = - tan(θd)           (11h)

Trigometric Functions of Common Angles

30°45°60°90°
Sin 0 1 / 2 √2 / 2 √3 / 2 1
Cos 1 √2 / 2 √2 / 2 1 / 2 0
Tan 0 √3 / 3 1 √3
Cot √3 1 √3 / 3 0
Sec 1 2 √3 / 3 √2 2
Cosec 2 √2 2 √3 / 3 1
Sponsored Links

Related Topics

Basics

The SI-system, unit converters, physical constants, drawing scales and more.

Mathematics

Mathematical rules and laws - numbers, areas, volumes, exponents, trigonometric functions and more.

Related Documents

Sponsored Links

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp from the SketchUp Pro Sketchup Extension Warehouse!

Translate
About the Engineering ToolBox!

Privacy

We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.

Citation

This page can be cited as

  • The Engineering ToolBox (2008). Trigonometric Functions. [online] Available at: https://www.engineeringtoolbox.com/natural-trigonometric-functions-d_1124.html [Accessed Day Month Year].

Modify access date.

. .

close

3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

6 6

Sponsored Links
.