Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

This is an AMP page - Open full page! for all features.

Trigonometric Functions

Sponsored Links

Natural trigonometric functions are expressed as

sin(θ d ) = a / c

= 1 / csc( θ d )

= cos(π / 2 - < θ r < )                       (1)

where

θ d = angle in degrees

θ r = angle in radians


cos( θ d ) = b / c

= 1 / sec( θ d )

= sin(π / 2 - θ r )                       (2)


tan( θ d ) = a / b

= 1 / cot( θ d )

= sin( θ d ) / cos( θ d )

= cot(π / 2 - θ r )                         (3)


cot( θ d ) = 1 / tan( θ d )

= cos( θ d ) / sin( θ d )

= tan(π / 2 - θ r )                          (4)


Trigonometric functions ranging 0 to 90 degrees are tabulated below:

Inverse functions

arcsin (a) = sin -1 (a)                            (1a)

arccos (a) = cos -1 (a)                           (2a)

arctan (a) = tan -1 (a)                           (3a)

Addition Formula

sin (a ± b) = sin (a) cos (b) ± cos (a) sin (b)                             (5)

cos (a ± b) = cos (a) cos (b) ± sin (a) sin (b)                            (5b)

tan (a ± b) = (tan(a) ± tan(b)) / (1 ± tan(a) tan(b))                         (5c)

Sum and Difference Formula

sin (a) + sin (b) = 2 sin ((a + b)/2) cos ((a + b)/2)                          (6)

sin (a) - sin (b) = 2 cos ((a + b)/2) sin ((a - b)/2)                          (6b)

cos (a) + cos (b) = 2 cos ((a + b)/2) cos ((a - b)/2)                          (6c)

cos (a) - cos (b) = - 2 sin ((a + b)/2) sin ((a - b)/2)                         (6d)

tan (a) + tan (b) = sin (a + b) / (cos (a) cos (b))                       (6e)

tan (a) - tan (b) = sin (a - b) / (cos (a) cos (b))                    (6f)

Product Formula

2 sin (a) cos (b) = sin (a - b) + sin (a + b)                       (7)

2 sin (a) sin (b) = cos (a - b) - cos (a - b)                      (7b)

2 cos (a) cos (b) = cos (a - b) + cos (a + b)                      (7c)

Multiple Angle and Powers Formula

sin (2 a) = 2 sin (a)  cos (a)                        (8)

cos (2 a) = cos2(a) - sin2(a)                        (8b)

cos (2 a) = 2 cos2(a) - 1                          (8c)

cos (2 a) = 1 - 2 sin2(a)                        (8d)

tan (2  a) = 2 tan a / (1 - tan2(a))                     (8e)

sin2(a) + cos2(a) = 1                         (8f)

sec2(a) = tan2(a) + 1                         (8g)

Special Triangles

Trigonometric Values

sin(-θ d ) = - sin(θ d )                 (9a)

where

θ d = angle in degrees

sin(90° + θ d ) = cos(θ d )           (9b)

sin(90° - θ d ) = cos(θ d )           (9c)

sin(180° + θ d ) = - sin(θ d )           (9d)

sin(180° - θ d ) = sin(θ d )           (9e)

sin(270° + θ d ) = - cos(θ d )           (9f)

sin(270° - θ d ) = - cos(θ d )          (9g)

sin(360° + θ d ) = sin(θ d )          (9h)

sin(360° - θ d ) = - sin(θ d )          (9h)

cos(-θ d ) = cos(θ d )                (10a)

cos(90° + θ d ) = - sin(θ d )           (10b)

cos(90° - θ d ) = sin(θ d )          (10c)

cos(180° + θ d ) = - cos(θ d )          (10d)

cos(180° - θ d ) = - cos(θ d )          (10e)

cos(270° + θ d ) = sin(θ d )           (10f)

cos(270° - θ d ) = - sin(θ d )          (10g)

cos(360° + θ d ) = cos(θ d )           (10h)

cos(360° - θ d ) = cos(θ d )           (10h)

tan(-θ d ) = - tan(θ d )                (11a)

tan(90° + θ d ) = - cot(θ d )           (11b)

tan(90° - θ d ) = cot(θ d )           (11c)

tan(180° + θ d ) = tan(θ d )           (11d)

tan(180° - θ d ) = - tan(θ d )            (11e)

tan(270° + θ d ) = - cot(θ d )           (11f)

tan(270° - θ d ) = cot(θ d )           (11g)

tan(360° + θ d ) = tan(θ d )            (11h)

tan(360° - θ d ) = - tan(θ d )           (11h)

Trigometric Functions of Common Angles

30°45°60°90°
Sin 0 1 / 2 √2 / 2 √3 / 2 1
Cos 1 √2 / 2 √2 / 2 1 / 2 0
Tan 0 √3 / 3 1 √3
Cot √3 1 √3 / 3 0
Sec 1 2 √3 / 3 √2 2
Cosec 2 √2 2 √3 / 3 1
Sponsored Links

Related Topics

Basics

The SI-system, unit converters, physical constants, drawing scales and more.

Mathematics

Mathematical rules and laws - numbers, areas, volumes, exponents, trigonometric functions and more.

Related Documents

Algebraic Expressions

Principal algebraic expressions formulas.

Angle Calculator - Carpenter's Square

Calculate angles with a straight board across carpenter's square.

Angle Converter

Converting between angle units.

Centroids of Plane Areas

The controid of square, rectangle, circle, semi-circle and right-angled triangle.

Complex Numbers

Complex numbers are used in alternating current theory and mechanical vector analysis.

Fractions

Law of fractions

Geometric Shapes - Areas

Areas, diagonals and more - of geometric figures like rectangles, triangles, trapezoids ..

Hyperbolic Functions

Exponential functions related to the hyperbola.

Law of Cosines

One side of a triangle when the opposite angle and two sides are known.

Law of Tangents

Triangles and law of tangents.

Laws of Indices

Simplifying calculations by involving indices.

Logarithms

The rules of logarithms - log10 and loge for numbers ranging 1 to 1000.

Miter Saw - Calculate Sawing Angle

Calculate miter saw protractor angles for skirting and decorative mouldings work.

Numbers - Square, Cube, Square Root and Cubic Root Calculator

Calculate square, cube, square root and cubic root. Values tabulated for numbers ranging 1 to 100.

Numbers - Squares, Cubes and Roots

Numbers - squares, cubes, square roots and cube roots.

Oblique Triangle

Calculate oblique triangles.

Pythagorean Theorem

Verifying square corners.

Radians vs. Degrees

Radian is the SI unit of angle. Convert between degrees and radians. Calculate angular velocity.

Right Angled Triangle

Right angled triangle equations.

Soil - Earth Weight and Composition

Typical weight and composition of soil.

Squaring with Diagonal Measurements

A rectangle is square if the lengths of both diagonals are equal.

Standard Differentials and Integrals

Equations for differentials and integrals.

Taylor Series

Function as an infinite sum of terms.

Vector Addition

Online vector calculator - add vectors with different magnitude and direction - like forces, velocities and more.

Sponsored Links

Search Engineering ToolBox

  • the most efficient way to navigate the Engineering ToolBox!

SketchUp Extension - Online 3D modeling!

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp from the Sketchup Extension Warehouse!

Privacy

We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.