Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Cantilever Beams - Moments and Deflections

Maximum reaction force, deflection and moment - single and uniform loads

Sponsored Links

Cantilever Beam - Single Load at the End

Cantilever beam - single load - deflection

Maximum Reaction Force

at the fixed end can be expressed as:

RA = F                              (1a)

where

RA = reaction force in A (N, lb)

F = single acting force in B (N, lb)

Maximum Moment

at the fixed end can be expressed as

Mmax = MA

          = - F L                               (1b)

where

MA = maximum moment in A (Nm, Nmm, lb in)

L = length of beam (m, mm, in)

Maximum Deflection

at the end of the cantilever beam can be expressed as

δB = F L3 / (3 E I)                                      (1c)

where

δB = maximum deflection in B (m, mm, in)

E = modulus of elasticity (N/m2 (Pa), N/mm2, lb/in2 (psi))

I = moment of Inertia (m4, mm4, in4)

b = length between B and C (m, mm, in)

Stress

The stress in a bending beam can be expressed as

σ = y M / I                                     (1d)            

where

σ = stress (Pa (N/m2), N/mm2, psi)

y = distance to point from neutral axis (m, mm, in)

M = bending moment (Nm, lb in)

I = moment of Inertia (m4, mm4, in4)

The maximum moment in a cantilever beam is at the fixed point and the maximum stress can be calculated by combining 1b and 1d to

σmax = ymax F L / I                (1e)

Example - Cantilever Beam with Single Load at the End, Metric Units

The maximum moment at the fixed end of a UB 305 x 127 x 42 beam steel flange cantilever beam 5000 mm long, with moment of inertia 8196 cm4 (81960000 mm4), modulus of elasticity 200 GPa (200000 N/mm2) and with a single load 3000 N at the end can be calculated as

Mmax = (3000 N)  (5000 mm)

         = 1.5 107 Nmm

         = 1.5 104 Nm

The maximum deflection at the free end can be calculated as

δB = (3000 N) (5000 mm)3 / (3 (2 105 N/mm2) (8.196 107 mm4)) 

    = 7.6 mm

The height of the beam is 300 mm and the distance of the extreme point to the neutral axis is 150 mm. The maximum stress in the beam can be calculated as

σmax = (150 mm) (3000 N) (5000 mm) / (8.196 107 mm4)

    = 27.4 (N/mm2)

    = 27.4 106 (N/m2, Pa)

    = 27.4 MPa

Maximum stress is way below the ultimate tensile strength for most steel.

Cantilever Beam - Single Load

Cantilever beam - single load - deflection

Maximum Reaction Force

at the fixed end can be expressed as:

RA = F                              (2a)

where

RA = reaction force in A (N, lb)

F = single acting force in B (N, lb)

Maximum Moment

at the fixed end can be expressed as

Mmax = MA

          = - F a                               (2b)

where

MA = maximum moment in A (N.m, N.mm, lb.in)

a = length between A and B (m, mm, in)

Maximum Deflection

at the end of the cantilever beam can be expressed as

δC = (F a3 / (3 E I)) (1 + 3 b / 2 a)                                       (2c)

where

δC = maximum deflection in C (m, mm, in)

E = modulus of elasticity (N/m2 (Pa), N/mm2, lb/in2 (psi))

I = moment of Inertia (m4, mm4, in4)

b = length between B and C (m, mm, in)

Maximum Deflection

at the action of the single force can be expressed as

δB = F a3 / (3 E I)                              (2d)

where

δB = maximum deflection in B (m, mm, in)

Maximum Stress

The maximum stress can be calculated by combining 1d and 2b to

σmax = ymax F a / I               (2e)   

Cantilever Beam - Single Load Calculator

A generic calculator - be consistent and use metric values based on m or mm, or imperial values based on inches. Default typical values are in metric mm.

F - Load (N, lb)

a - Length of beam between A and B  (m, mm, in)

b - Length of beam between B and C (m, mm, in)

I - Moment of Inertia (m4, mm4, in4)

E - Modulus of Elasticity (N/m2, N/mm2, psi)

y - Distance from neutral axis (m, mm, in)

Cantilever Beam - Uniform Distributed Load

Cantilever beam - uniform load - deflection

Maximum Reaction

at the fixed end can be expressed as:

RA = q L                                (3a)

where

RA = reaction force in A (N, lb)

q = uniform distributed load (N/m, N/mm, lb/in)

L = length of cantilever beam (m, mm, in)

Maximum Moment

at the fixed end can be expressed as

MA = - q L2 / 2                              (3b)

Maximum Deflection

at the end can be expressed as

δB = q L4 / (8 E I)                               (3c)

where

δB = maximum deflection in B (m, mm, in)

Cantilever Beam - Uniform Load Calculator

A generic calculator - use metric values based on m or mm, or imperial values based on inches. Default typical values are in metric mm.

q - Uniform load (N/m, N/mm, lb/in)

L - Length of beam (m, mm, in)

I - Moment of Inertia (m4, mm4, in4)

E - Modulus of Elasticity (Pa, N/mm2, psi)

y - Distance from neutral axis (m, mm, in)

More than One Point Load and/or Uniform Load acting on a Cantilever Beam

If more than one point load and/or uniform load are acting on a cantilever beam - the resulting maximum moment at the fixed end A and the resulting maximum deflection at end B can be calculated by summarizing the maximum moment in A and maximum deflection in B for each point and/or uniform load. 

Cantilever Beam - Declining Distributed Load

Cantilever beam - declining distributed load - deflection

Maximum Reaction Force

at the fixed end can be expressed as:

RA = q L / 2                              (4a)

where

RA = reaction force in A (N, lb)

q = declining distributed load - max value at A - zero at B (N/m, lb/ft)

Maximum Moment

at the fixed end can be expressed as

Mmax = MA

          = - q L2 / 6                               (4b)

where

MA = maximum moment in A (N.m, N.mm, lb.in)

L = length of beam (m, mm, in)

Maximum Deflection

at the end of the cantilever beam can be expressed as

δB = q L4 / (30 E I)                                      (4c)

where

δB = maximum deflection in B (m, mm, in)

E = modulus of elasticity (N/m2 (Pa), N/mm2, lb/in2 (psi))

I = moment of Inertia (m4, mm4, in4)

Insert beams to your Sketchup model with the Engineering ToolBox Sketchup Extension

Engineering ToolBox Sketchup Extension - Insert W flange beams

Sponsored Links

Related Topics

Related Documents

Tag Search

  • en: cantilever beams single uniform load deflection
  • es: voladizo vigas flexión bajo carga uniforme único
  • de: Kragträger einzigen einheitlichen Lastverformungs
Sponsored Links

Search the Engineering ToolBox

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro .Add the Engineering ToolBox extension to your SketchUp from the SketchUp Pro Sketchup Extension Warehouse!

Translate this page to
About the Engineering ToolBox!

Privacy

We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.

Citation

This page can be cited as

  • Engineering ToolBox, (2013). Cantilever Beams - Moments and Deflections. [online] Available at: https://www.engineeringtoolbox.com/cantilever-beams-d_1848.html [Accessed Day Mo. Year].

Modify access date.

. .

close

3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Scientific Online Calculator

Scientific Calculator

10 16

Sponsored Links
.