Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Three-Hinged Arches - Continuous and Point Loads

Support reactions and bending moments

Sponsored Links

Three-Hinged Arch - Continuous Load

Three-Hinged Arche - Continuous load - Reaction Forces and MomentBending Moment

Mm = (q L2 / 8) (4 (xm / L - (xm / L)2) - ym / yc)                               (1a)

where

Mm = moment at m (Nm, lbf ft)

q = continuous load (N/m, lbf/ft)

xm = x-coordinate for m (m, ft)

ym = y-coordinate for m (m, ft)

yc = y-coordinate for center hinge (m, ft)

L = horizontal distance between the supports (m, ft)

Cartesian coordinates related to a center located in the hinge of support no. 1.

Support Reactions

R1y = R2y

    = q L / 2                                (1b)

where

R = support force (N, lbf)

R1x = R2x

    = q L2 / (8 yc)                               (1c)

Three-Hinged Arch - Half Continuous Load

Three-Hinged Arche - Continuous half load - Reaction Forces and MomentBending Moment

Mm = (q L2 / 16) (8 (xm / L - (xm / L)2) - 2 xm / L  - ym / yc)                               (2a)

Support Reactions

R1y = 3 q L / 8                                (2b)

R2y = q L / 8                                (2c)

R1x R2x

     = q L2 / (16 yc)                               (2d)

Three-Hinged Arch - Horizontal Continuous Load

Three-Hinged Arche - Continuous horizontal load - Reaction Forces and MomentBending Moment

Mm = (q L2 / 2) (xm / L - 3 xm / L + (xm / L)2)                                (3a)

Mk = (q L2 / 4) (2 (L - xk) / L - yk / yc)                                (3b)

where

Mk = moment at k (Nm, lbf ft)

yk = y-coordinate for k (m, ft)

xk = x-coordinate for k (m, ft)

Support Reactions

R1y = - q yc2 / (2 L)                                (3c)

R2y = q yc2 / (2 L)                                (3d)

R1x = - 3 q yc / 4                               (3e)

R2x = q yc / 4                               (3f)

Three-Hinged Arch - Eccentric Point Load

Three-Hinged Arche - Eccentric Point load - Reaction Forces and MomentBending Moment

Mm = (F a / 2) (2 (b / a) (xm / L) - ym / yc)                                (4a)

Mk = (F a /2) (2 (L - xk) / L - yk / yc)                                (4b)

Support Reactions

R1y = F b / L                                (4c)

R2y = F a / L                                 (4d)

R1x = R2x

      = F a / (2 yc)                               (4f)

Sponsored Links

Related Topics

Related Documents

Tag Search

  • en: three hinged arches continuous point loads support forces moments
Sponsored Links

Search the Engineering ToolBox

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro .Add the Engineering ToolBox extension to your SketchUp from the SketchUp Pro Sketchup Extension Warehouse!

Translate this page to
About the Engineering ToolBox!
.

close

3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Scientific Online Calculator

Scientific Calculator

1 19

Sponsored Links