Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Stress, Strain and Young's Modulus

Stress is force per unit area - strain is the deformation of a solid due to stress

Sponsored Links

Stress

Stress is the ratio of applied force F to a cross section area - defined as "force per unit area".

Tensile, compressive and shear force

  • tensile stress - stress that tends to stretch or lengthen the material - acts normal to the stressed area
  • compressive stress - stress that tends to compress or shorten the material - acts normal to the stressed area
  • shearing stress - stress that tends to shear the material - acts in plane to the stressed area at right-angles to compressive or tensile stress

Tensile or Compressive Stress - Normal Stress

Tensile or compressive stress normal to the plane is usually denoted "normal stress" or "direct stress" and can be expressed as

σ = Fn / A                                    (1)

where

σ = normal stress (Pa (N/m2), psi (lbf/in2))

Fn = normal force acting perpendicular to the area (N, lbf)

A = area (m2, in2)

  • a kip is an imperial unit of force - it equals 1000 lbf (pounds-force)
  • 1 kip = 4448.2216 Newtons (N) = 4.4482216 kilo Newtons (kN)

A normal force acts perpendicular to area and is developed whenever external loads tends to push or pull the two segments of a body.

Example - Tensile Force acting on a Rod

A force of 10 kN is acting on a circular rod with diameter 10 mm. The stress in the rod can be calculated as

σ = (10 103 N) / (π ((10 10-3 m) / 2)2)

   = 127388535 (N/m2

   = 127 (MPa)

Example - Force acting on a Douglas Fir Square Post

A compressive load of 30000 lb is acting on short square 6 x 6 in post of Douglas fir. The dressed size of the post is 5.5 x 5.5 in and the compressive stress can be calculated as

σ = (30000 lb) / ((5.5 in) (5.5 in))

   = 991 (lb/in2, psi)

Shear Stress

Stress parallel to a plane is usually denoted as "shear stress" and can be expressed as

τ = Fp / A                               (2)

where

τ = shear stress (Pa (N/m2), psi (lbf/in2))

Fp = shear force in the plane of the area (N, lbf)

A = area (m2, in2)

A shear force lies in the plane of an area and is developed when external loads tend to cause the two segments of a body to slide over one another.

Strain (Deformation)

Strain is defined as "deformation of a solid due to stress". 

  • Normal strain - elongation or contraction of a line segment
  • Shear strain - change in angle between two line segments originally perpendicular

Normal strain and can be expressed as

ε = dl / lo

   = σ / E                              (3)

where

dl = change of length (m, in)

lo = initial length (m, in)

ε = strain - unit-less

E = Young's modulus (Modulus of Elasticity) (Pa , (N/m2), psi (lbf/in2))

  • Young's modulus can be used to predict the elongation or compression of an object when exposed to a force

Note that strain is a dimensionless unit since it is the ratio of two lengths. But it also common practice to state it as the ratio of two length units - like m/m or in/in.

Example - Stress and Change of Length

The rod in the example above is 2 m long and made of steel with Modulus of Elasticity 200 GPa (200 109 N/m2). The change of length can be calculated by transforming (3) to

 dl = σ l/ E

     = (127 106 Pa) (2 m) / (200 109 Pa) 

     = 0.00127 m

     = 1.27 mm

Strain Energy

Stressing an object stores energy in it. For an axial load the energy stored can be expressed as

U = 1/2 Fn dl

where

U = deformation energy (J (N m), ft lb)

Young's Modulus - Modulus of Elasticity (or Tensile Modulus) - Hooke's Law 

Most metals deforms proportional to imposed load over a range of loads. Stress is proportional to load and strain is proportional to deformation as expressed with Hooke's Law.

E = stress / strain

   = σ / ε

   = (Fn / A) / (dl / lo)                                     (4)

where

E = Young's Modulus (N/m2) (lb/in2, psi)

Modulus of Elasticity, or Young's Modulus, is commonly used for metals and metal alloys and expressed in terms 106 lbf/in2, N/m2 or Pa. Tensile modulus is often used for plastics and is expressed in terms 105 lbf/in2 or GPa.

Shear Modulus of Elasticity - or Modulus of Rigidity

G = stress / strain

   = τ / γ

   = (Fp / A) / (s / d)                                    (5)

where

G = Shear Modulus of Elasticity - or Modulus of Rigidity (N/m2) (lb/in2, psi)

τ  = shear stress ((Pa) N/m2, psi)

γ = unit less measure of shear strain

Fp = force parallel to the faces which they act

A = area (m2, in2)

s = displacement of the faces (m, in)

d = distance between the faces displaced (m, in)

Bulk Modulus Elasticity

The Bulk Modulus Elasticity - or Volume Modulus - is a measure of the substance's resistance to uniform compression. Bulk Modulus of Elasticity is the ratio of stress to change in volume of a material subjected to axial loading.

Elastic Moduli

Elastic moduli for some common materials:

MaterialYoung's Modulus
- E -
Shear Modulus
- G -
Bulk Modulus
- K -
GPa106 psiGPa106 psi
GPa106 psi
Aluminum 70 10 24 3.4 70 10
Brass 91 13 36 5.1 61 8.5
Copper 110 16 42 6.0 140 20
Glass 55 7.8 23 3.3 37 5.2
Iron 91 13 70 10 100 14
Lead 16 2.3 5.6 0.8 7.7 1.1
Steel 200 29 84 12 160 23
  • 1 GPa = 109 Pa (N/m2)
Sponsored Links

Related Topics

Related Documents

Tag Search

  • en: stress strain young normal shear
  • es: tensiĆ³n-deformaciĆ³n joven cizalla normales
  • de: Spannungs-Dehnungs-junge normalen Scher
Sponsored Links

Search the Engineering ToolBox

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro .Add the Engineering ToolBox extension to your SketchUp from the SketchUp Pro Sketchup Extension Warehouse!

Translate this page to
About the Engineering ToolBox!

Citation

This page can be cited as

  • Engineering ToolBox, (2005). Stress, Strain and Young's Modulus. [online] Available at: https://www.engineeringtoolbox.com/stress-strain-d_950.html [Accessed Day Mo. Year].

Modify access date.

Customize Ads in the ToolBox

Make ads more useful in Google Ad Settings .

. .

close

3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Scientific Online Calculator

Scientific Calculator

10 12

Sponsored Links
.