Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

This is an AMP page - Open full page! for all features.

Combustion Heat

Sponsored Links

Go to tabulated values

Standard heat of combustion : The energy liberated when a substance X undergoes complete combustion, with excess of oxygen at standard conditions (25°C and 1 bar). In thermodynamical terms it is the negative of the enthalpy change for the combustion reaction.

n X + m O2 x CO2(g) + y H2O (l) + z Z + heat of combustion

where Z is any other products formed during the reaction and n, m, x, y and z are the number of moles of each molecule in the balanced equation.

The heat of combustion is utilised to quantify the performance of a fuel in a combustion system such as furnaces, motors and power generation turbines. It is the same as the gross heating value or energy content.

Generally, the heat of combustion can be expressed as the following:

ΔH c ° = - x ΔH f °(CO2,g) - y ΔH f °(H2O,l) - z ΔH f °(Z) + n ΔH f °(X) + m ΔH f °(O2,g)

where    ΔH c ° : heat of combustion at standard conditions (25°C and 1 bar)

ΔH f ° : heat (enthalpy) of formation at standard conditions (25°C, 1 bar)


Then, the heat of combustion can be calculated from the standard enthalpy of formation (ΔH f °) of the substances involved in the reaction, given as tabulated values.

See Thermodyamics key values internationally agreed , Standard state and enthalpy of formation, Gibbs free energy of formation, entropy and heat capacity and Standard enthalpy of formation, Gibbs energy of formation, entropy and molar heat capacity of organic substances

For compounds containing carbon, hydrogen and oxygen (as many organic compounds do), a general combustion reaction equation will be:

C a H b O c +  (a + ¼b - ½c) O2→ aCO2(g) + ½bH2O (l) + heat of combustion

and the heat of combustion can be calculated from the standard heat of formation of all compounds taking part in the reaction:

ΔH c ° = -a ΔH f °(CO2,g) - ½b ΔH f °(H2O,l) + ΔH f °(C a H b O c ) + (a + ¼b - ½c) ΔH f °(O2,g) = -a(- 393.51) - ½b(-285.830) + ΔH f °(C a H b O c ) + (a + ¼b - ½c)*0

= a(393.51) + b(142.915) + ΔH f °(C a H b O c )

Example:

What is the heat of comustion of liquid ethanol, with the formula C2H 5 OH (=C2H6 O)?

For ethanol, the constants a, b and c are 2, 6 and 1, respectively, and the chemical equation for the combustion of ethanol:

C2H6 O(l) + 3O2(g) → 2CO2(g)+ 3H2O(l)

The standard heat of formation of liquid ethanol , ΔH f °(C2H6 O, l), is -277.6 kJ/mol.

The heat of combustion of ethanol, ΔH c °(C2H6 O, l) = 2*393.51 + 6*142.915 + (-277.6) = 1366.91 kJ/mol. This can be converted to kJ per mass units:

The molweight of ethanol is (2*12.01 + 6*1.01 + 1*16.00) = 46.08 g/mol

The heat of combustion of ethanol, ΔH c °(C2H6 O, l) = 1366.91[kJ/mol] *1000[g/kg] / 48.08 [g/mol] = 29664 kJ/kg ethanol  = 29.7 MJ/kg = 12754 BTU/lb = 7086 kcal/kg


The table below shows values of heat of combustion calculated after the above described method. For substances containing nitrogen, it is assumed that the nitrogen atoms ends up as N2gas with ΔH f °(N2) = 0 kJ/mol. In such cases the general equation applies to also these substances. If it is known that other substances is formed in the cumbustion reactions, the exact products must be known to be able to calculate the heat of combustion.

Conversion to other units .

See also Fuel Gases Heating Values and Fossil Fuels - Energy Content .

For full table - rotate the screen!

Standard Heat of Combustion
Name Formula State* ΔH c °
kJ/mol
ΔH c °
kJ/g or MJ/kg
ΔH c °
kJ/kg
ΔH c °
BTU/lb
ΔH c °
kcal/kg
Acetaldehyde C2H 4 O liq 1167 26.49 26487 11387 6326
Acetamide C2H 5 NO cry 1185 20.06 20058 8623 4791
Acetic acid C2H 4 O 2 liq 874 14.55 14552 6256 3476
Acetone C 3 H6 O liq 1790 30.81 30814 13248 7360
Acetonitrile C2H 3 N liq 1256 30.59 30589 13151 7306
Acetylene (ethyne) C2H 2 gas 1300 49.92 49923 21463 11924
l-Alanine C 3 H 7 NO 2 cry 1577 17.70 17697 7608 4227
Ammonia NH 3 gas 383 22.48 22477 9663 5369
Aniline C6 H 7 N liq 3393 36.43 36429 15662 8701
Anthracene C 14 H 10 cry 7068 39.65 39654 17048 9471
Benzene C6 H6 liq 3268 41.83 41833 17985 9992
Benzoic acid C 7 H6 O 2 cry 3228.2 26.43 26432 11364 6313
1,3-Butadiene C 4 H6 gas 2542 46.99 46987 20201 11223
Butane C 4 H 10 gas 2878 49.50 49501 21282 11823
1-Butanol C 4 H 10 liq 2676 36.09 36092 15517 8621
2-Butanone C 4 H 8 O liq 2444 33.89 33888 14569 8094
1-Butene C 4 H 8 gas 2718 48.43 48432 20822 11568
cis-2 Butene C 4 H 8 gas 2710 48.29 48289 20761 11534
trans-2-Butene C 4 H 8 gas 2706 48.22 48218 20730 11517
Butanoic acid C 4 H 8 O 2 liq 2183.6 38.91 38909 16728 9293
Butylbenzene C 10 H 14 liq 5872.7 43.8 43754 18810 24994
Carbon (graphite) C cry 394 32.81 32806 14104 7836
Carbon monoxide CO gas 283 10.10 10104 4344 2413
Cyclobutane C 4 H 8 gas 2745.1 48.91 48914 21029 11683
Cyclobutene C 4 H6 gas 2588 47.84 47837 20566 11426
Cyclohexane C6 H 12 liq 3920 46.57 46567 20020 11122
Cyclopentane C 5 H 10 liq 3291.6 46.92 46922 20173 11207
Cyclopropane C 3 H6 gas 2091 49.68 49679 21358 11866
Decane C 10 H 22 liq 6778 47.63 47625 20475 11375
Diethyl ether (ethoxyethane) C 4 H 10 O liq 2724 36.74 36741 15796 8775
Dimethyl ether (methoxymethane) C2H6 O gas 1460 31.68 31684 13622 7568
Ethane C2H6 gas 1561 51.89 51895 22311 12395
1,2-Ethanediol C2H6 O 2 liq 1185 19.09 19088 8206 4559
Ethanol C2H6 O liq 1367 29.67 29666 12754 7086
Ethyl acetate C 4 H 8 O 2 liq 2238 25.40 25397 10919 6066
Ethylene (ethene) C2H 4 gas 1411 50.29 50285 21619 12010
Formaldehyde CH2O gas 571 19.01 19014 8175 4541
Formic acid CH2O 2 liq 254 5.52 5518 2372 1318
Glycerol C 3 H 8 O 3 liq 1654 17.96 17957 7720 4289
Heptane C 7 H 16 liq 4817 48.06 48059 20662 11479
Heptanoic acid C 7 H 14 O 2 liq 4145.2 31.83 31835 13687 7604
Hexane C6 H 14 liq 4163 48.31 48307 20767 11538
Hexadecanoic acid C 16 H 32 O 2 liq 10031.3 39.11 39112 16815 9342
Hexanoic acid C6 H 12 O 2 liq 3492.2 30.06 30059 12923 7179
Hydrazine N2H 4 liq 622 19.40 19401 8341 4634
Hydrogen H 2 gas 286 141.58 141584 60870 33817
Hydrogen cyanide CHN gas 672 24.86 24861 10688 5938
Ketene C2H2O gas 1025 24.38 24382 10482 5824
Methane CH 4 gas 891 55.51 55514 23867 13259
Methanol CH 4 O liq 726 22.65 22652 9739 5410
Methyl acetate C 3 H6 O 2 liq 1592 21.49 21487 9238 5132
Methylamine CH 5 N gas 1086 34.95 34953 15027 8348
Methylcyclohexane C 7 H 14 liq 4565.3 46.48 46485 19985 11103
Methylcyclopentane C6 H 12 liq 3938.1 46.78 46782 20113 11174
Methyl formate C2H 4 O 2 liq 973 16.20 16200 6965 3869
Methyl tert-butyl ether C 5 H 12 O liq 3369 38.21 38209 16427 9126
Naphthalene C 10 H 8 cry 5157 40.23 40232 17294 9609
Nitric oxide NO gas 91 3.03 3032 1304 724
Nitrobenzene C6 H 5 NO 2 liq 3088 25.08 25081 10783 5990
Nitromethane CH 3 NO 2 liq 710 11.63 11630 5000 2778
Nitrous oxide N2O gas 82 1.86 1863 801 445
Nonane C 9 H 20 liq 6125 47.74 47743 20526 11403
Octane C 8 H 18 liq 5470 47.87 47873 20582 11434
1-Octanol C 8 H 18 O liq 5294 40.64 40642 17473 9707
Pentane C 5 H 12 liq 3509 48.62 48621 20903 11613
Pentanoic acid C 5 H 10 O 2 liq 2837.3 27.78 27776 11942 6634
1-Pentanol C 5 H 12 O liq 3331 37.78 37779 16242 9023
Phenanthrene C 14 H 10 cry 7055 39.58 39581 17017 9454
Phenol C6 H6 O cry 3054 32.45 32448 13950 7750
Propanal C 3 H6 O liq 1522 26.20 26201 11264 6258
Propane C 3 H 8 gas 2220 50.33 50329 21638 12021
Propanenitrile C 3 H 5 N liq 1911 34.69 34689 14914 8285
Propanoic acid C 3 H6 O 2 liq 1527.3 20.61 20614 8862 4924
1-Propanol C 3 H 8 O liq 2021 33.62 33622 14455 8030
2-Propanol C 3 H 8 O liq 2006 33.37 33372 14347 7971
Propene C 3 H6 gas 2058 48.90 48895 21021 11678
Propyne C 3 H 4 gas 185.0 4.62 4617 1985 1103
Pyridine C 5 H 5 N liq 2782 35.17 35166 15119 8399
Toluene (methylbenzene) C 7 H 8 liq 3910 42.43 42431 18242 10134
Trimethylamine C 3 H 9 N gas 2443 41.32 41316 17763 9868
2,4,6-Trinitrotoluene C 7 H 5 N 3 O6 cry 3406 14.99 14994 6446 3581
Undecane C 11 H 24 liq 7431.4 47.53 47530 20434 11352
Urea CH 4 N2O cry 632.7 10.53 10533 4528 2516
*  gas = gas,  liq = liquid,  cry = crystalline (solid)

Unit conversion

  • 1 kJ/kg = 1 J/g = 10-3 GJ/tonne = 0.000278 kWh/kg = 0.4299 Btu/ lb m = 0.23884 kcal/kg
  • 1 Btu/lb m = 2.326 kJ/kg = 0.55 kcal/kg
  • 1 kcal/kg = 4.1868 kJ/kg = 1.8 Btu/lb m
Sponsored Links

Related Topics

Combustion

Combustion processes and their efficiency. Boiler house and chimney topics. Properties of fuels like oil, gas, coal and wood and more. Safety valves and tanks.

Material Properties

Properties of gases, fluids and solids. Densities, specific heats, viscosities and more.

Thermodynamics

Work, heat and energy systems.

Related Documents

1st Law of Thermodynamics

The First Law of Thermodynamics simply states that energy can be neither created nor destroyed (conservation of energy). Thus power generation processes and energy sources actually involve conversion of energy from one form to another, rather than creation of energy from nothing.

2nd Law of Thermodynamics

Entropy and disorder.

Acetylene - Thermophysical Properties

Chemical, Physical and Thermal Properties of Acetylene.

Alternative Fuels - Properties

Properties of alternative fuels like biodiesel, E85, CNG and more.

Biogas - Composition

Typical composition of biogas produced from household waste.

Biogas - Energy Content

Energy content in biogas produced from municipal and industrial waste.

Biogas - Potential from Animal Manure

Potential biogas production from animal manure.

Butane - Thermal Conductivity vs. Temperature and Pressure

Online calculators, figures and tables showing thermal conductivity of liquid and gaseous butane, C4H10, at varying temperature and pressure, SI and Imperial units.

Butane - Thermophysical Properties

Chemical, physical and thermal properties of n-Butane.

Combustion Processes and Combustion Efficiency

Typical furnace combustion efficiencies in fireplaces, space heaters, boilers and more.

Energy Content in common Energy Sources

Heating fuels and their energy content.

Ethane Gas - Specific Heat vs. Temperature

Specific heat of Ethane Gas - C2H6 - for temperatures ranging 250 - 900 K.

Ethane Liquid - Thermal Properties

Density, specific heat and more of liquid ethane.

Ethanol - Density and Specific Weight vs. Temperature and Pressure

Online calculator, figures and tables showing density and specific weight of ethanol at temperatures ranging from -25 to 325 °C (-10 to 620 °F) at atmospheric and higher pressure - Imperial and SI Units.

Ethanol - Specific Heat vs. Temperature and Pressure

Online calculators, figures and tables showing specific heat , Cp and Cv, of gasous and liquid ethanol at temperatures ranging from -25 to 325 °C (-10 to 620 °F) at atmospheric and higher pressure - Imperial and SI Units.

Food - Calorific Combustion Values

Combustion heat values of some foods.

Fuel Gases - Heating Values

Combustion heat values for gases like acetylene, blast furnace gas, ethane, biogas and more - Gross and Net values.

Gas Oil - Classification

Classification of gas oil based on BS 2869 - Specification for fuel oils for agricultural, domestic and industrial engines and boilers.

Gases - Gross and Net Heat Values

Gross heat and net heat values for gases like hydrogen, methane and more.

Heat Capacity

The amount of heat required to change the temperature of a substance by one degree.

Heat, Work and Energy

Heat vs. work vs. energy.

High and Low Heat Values

The gross (high) and net (low) heating values.

Hydrogen - Thermophysical Properties

Chemical, Physical and Thermal Properties of Hydrogen - H2.

Methane - Dynamic and Kinematic Viscosity vs. Temperature and Pressure

Online calculator, figures and tables showing dynamic and kinematic viscosity of methane, CH4, at varying temperature and pressure - Imperial and SI Units.

Methane - Thermophysical Properties

Chemical, Physical and Thermal Properties of Methane - CH4. Phase diagram included.

Octane Liquid - Thermal Properties

Density, specific heat, thermal conductivity and more.

Paraffins and Alkanes - Combustion Properties

Properties like heat values, air/fuel ratios, flame speed, flame temperatures, ignition temperatures, flash points and flammability limits.

Propane - Prandtl Number vs. Temperature and Pressure

Figures and tables with Prandtl Number of liquid and gaseous propane at varying temperarure and pressure, SI and Imperial units.

Propane - Thermophysical properties

Chemical, physical and thermal properties of propane gas - C3H8.

Standard enthalpy of formation, Gibbs energy of formation, entropy and molar heat capacity of organic substances

The standard enthalpy of formation, Gibbs energy of formation, entropy and molar heat capacity are tabulated for more than hundred organic substances.

Standard State and Enthalpy of Formation, Gibbs Free Energy of Formation, Entropy and Heat Capacity

Definition and explanation of the terms standard state and standard enthalpy of formation, with listing of values for standard enthalpy and Gibbs free energy of formation, as well as standard entropy and molar heat capacity, of 370 inorganic compounds.

Thermodynamic Key Values Internationally Agreed

Internationally agreed, internally consistent, values for the thermodynamic properties (standard enthalpy of formation, entropy and [H°(298)-H°(0)]) of key chemical substances.

Thermodynamic Terms - Functions and Relations

Common thermodynamic terms and functions - potential energy, kinetic energy, thermal or internal energy, chemical energy, nuclear energy and more.

Waste Fuel - Heat Values

Fuel from waste products and their heat values.

Sponsored Links

Search Engineering ToolBox

  • the most efficient way to navigate the Engineering ToolBox!

SketchUp Extension - Online 3D modeling!

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp from the Sketchup Extension Warehouse!

Privacy

We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.