Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Power Factor - Inductive Load

Inductive loads and power factors for electrical three-phase motors

Sponsored Links

The power factor of an AC electric power system is defined as the ratio active (true or real) power to apparent power, where

  • Active (Real or True) Power is measured in watts (W) and is the power drawn by the electrical resistance of a system doing useful work
  • Apparent Power is measured in volt-amperes (VA) and is the voltage on an AC system multiplied by all the current that flows in it. It is the vector sum of the active and the reactive power
  • Reactive Power  is measured in volt-amperes reactive (VAR). Reactive Power is power stored in and discharged by inductive motors, transformers and solenoids

Reactive power is required for the magnetization of an electric motor but does not perform any work. Reactive power required by inductive loads increases the amounts of apparent power -  and the required supply to the grid from the power supplier to the distribution system.

Increased reactive and apparent power will decrease the power factor - PF.

Power Factor

It is common to define the Power Factor - PF - as the cosine of the phase angle between voltage and current - or the "cosφ":

PF = cos φ


PF = power factor

φ = phase angle between voltage and current

power factor active true reactive apparent power

 The power factor defined by IEEE and IEC is the ratio between the applied active (true) power - and the apparent power, and can in general be expressed as:

PF = P / S                (1)


PF = power factor

P = active (true or real) power (Watts)

S = apparent power (VA, volts amps)

A low power factor is the result of inductive loads such as transformers and electric motors. Unlike resistance loads creating heat by consuming kilowatts, inductive loads require a current flow to create magnetic fields to produce the desired work.

Power factor is an important measurement in electrical AC systems because

  • an overall power factor less than 1 indicates that the electricity supplier need to provide more generating capacity than actually required
  • the current waveform distortion that contributes to reduced power factor is caused by voltage waveform distortion and overheating in the neutral cables of three-phase systems

International standards such as IEC 61000-3-2 have been established to control current waveform distortion by introducing limits for the amplitude of current harmonics.

Example - Power Factor

A industrial plant draws 200 A at 400 V and the supply transformer and backup UPS is rated 400 V x 200 A = 80 kVA.

If the power factor - PF - of the loads is 0.7 - only

80 kVA × 0.7

    = 56 kW

of real power is consumed by the system. If the power factor is close to 1 (a purely resistive circuit) the supply system with transformers, cables, switch-gear and UPS could be made considerably smaller.

  • Any power factor less than 1 means that the circuit's wiring has to carry more current than what would be necessary with zero reactance in the circuit to deliver the same amount of (true) power to the resistive load.

A low power factor is expensive and inefficient and some utility companies may charge additional fees when the power factor is less than 0.95. A low power factor will reduce the electrical system's distribution capacity by increasing the current flow and causing voltage drops.

"Leading" or "Lagging" Power Factors

A Power Factor is usually stated as "leading" or "lagging" to show the sign of the phase angle.

  • With a purely resistive load the current and voltage changes polarity in step and the power factor will be 1. Electrical energy flows in a single direction across the network in each cycle.
  • Inductive loads - transformers, motors and wound coils - consumes reactive power with current waveform lagging the voltage.
  • Capacitive loads - capacitor banks or buried cables - generates reactive power with current phase leading the voltage.

Inductive and capacitive loads stores energy in magnetic or electric fields in the devices during parts of the AC cycles. The energy is returned back to the power source during the rest of the cycles.

In systems with mainly inductive loads - typically industrial plants with many electric motors - the lagging voltage are compensated with capacitor banks.

Power Factor for a Three-Phase Motor

The total power required by an inductive device like a motor or similar consists of

  • Active (true or real)  power (measured in kilowatts, kW)
  • Reactive power - the nonworking power caused by the magnetizing current, required to operate the device (measured in kilovars, kVAR)

The power factor for a three-phase electric motor can be expressed as:

PF = P / [(3)1/2 U I]                  (2)


PF = power factor

P = power applied (W, watts)

U = voltage (V)

I = current (A, amps)

Typical Motor Power Factors

Power Factor
1/2 load3/4 loadfull load
0 - 5 1800 0.72 0.82 0.84
5 - 20 1800 0.74 0.84 0.86
20 - 100 1800 0.79 0.86 0.89
100 - 300 1800 0.81 0.88 0.91
  • 1 hp = 745.7 W
Sponsored Links

Related Topics

Related Documents

Tag Search

  • en: power factor cos electrical motor three phase
  • es: factor de potencia cos motor elĂ©ctrico trifásico
  • de: Leistungsfaktor cos Elektromotor dreiphasig
Sponsored Links

Search the Engineering ToolBox

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro .Add the Engineering ToolBox extension to your SketchUp from the SketchUp Pro Sketchup Extension Warehouse!

Translate this page to
About the Engineering ToolBox!


We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.


This page can be cited as

  • Engineering ToolBox, (2004). Power Factor - Inductive Load. [online] Available at: [Accessed Day Mo. Year].

Modify access date.

. .


3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Scientific Online Calculator

Scientific Calculator

9 13

Sponsored Links