Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Drag Coefficient

The drag coefficient quantifies the drag or resistance of an object in a fluid environment.

Any object moving through a fluid experiences drag - the net force in the direction of flow due to pressure and shear stress forces on the surface of the object.

The drag force can be expressed as:

Fd = cd 1/2 ρ v2 A                      (1)

where

Fd = drag force (N)

cd = drag coefficient

ρ = density of fluid (1.2 kg/m3 for air at NTP)

v = flow velocity (m/s)

A = characteristic frontal area of the body  (m2)

The drag coefficient is a function of several parameters like shape of the body, Reynolds Number for the flow, Froude number, Mach Number and Roughness of the Surface.

The characteristic frontal area - A - depends on the body.

Objects drag coefficients are mostly results of experiments. The drag coefficients for some common bodies are indicated below:

Drag Coefficients vs. Type of Objects
Type of ObjectDrag Coefficient
- cd -
Frontal Area
Laminar flat plate (Re=106) 0.001
Dolphin 0.0036 wetted area
Turbulent flat plate (Re=106) 0.005
Subsonic Transport Aircraft 0.012
Supersonic Fighter,M=2.5 0.016
Streamlined body 0.04 π / 4 d2
Airplane wing, normal position 0.05
Sreamlined half-body 0.09
Long stream-lined body 0.1
Bicycle - Streamlined Velomobile 0.12 5 ft2 (0.47 m2)
Airplane wing, stalled 0.15
Modern car like a Tesla model 3 or model Y 0.23
Toyota Prius, Tesla model S 0.24 frontal area
Tesla model X
Sports car, sloping rear 0.2 - 0.3 frontal area
Common car like Opel Vectra (class C) 0.29 frontal area
Hollow semi-sphere facing stream 0.38
Bird 0.4 frontal area
Solid Hemisphere 0.42 π / 4 d2
Sphere 0.5
Saloon Car, stepped rear 0.4 - 0.5 frontal area
Bike - Drafting behind an other cyclist 0.5 3.9 ft2 (0.36 m2)
Convertible, open top 0.6 - 0.7 frontal area
Bus 0.6 - 0.8 frontal area
Old Car like a T-ford 0.7 - 0.9 frontal area
Cube 0.8 s2
Bike - Racing 0.88 3.9 ft2 (0.36 m2)
Bicycle 0.9
Tractor Trailed Truck 0.96 frontal area
Truck 0.8 - 1.0 frontal area
Person standing 1.0 – 1.3
Bike - Upright Commuter 1.1 5.5 ft2 (0.51 m2)
Thin Disk 1.1 π / 4 d2
Solid Hemisphere flow normal to flat side 1.17 π / 4 d2
Squared flat plate at 90 deg 1.17
Wires and cables 1.0 - 1.3
Person (upright position) 1.0 - 1.3
Hollow semi-cylinder opposite stream 1.2
Ski jumper 1.2 - 1.3
Hollow semi-sphere opposite stream 1.42
Passenger Train 1.8 frontal area
Motorcycle and rider 1.8 frontal area
Long flat plate at 90 deg 1.98
Rectangular box 2.1

Air resistance - drag force - drag coefficient

Example - Air Resistance Force acting on a Normal Car

The force required to overcome air resistance for a normal family car with drag coefficient 0.29 and frontal area 2 m2 in 90 km/h can be calculated as:

Fd = 0.29 1/2 (1.2 kg/m3) ((90 km/h) (1000 m/km) / (3600 s/h))2 (2 m2

   = 217.5 N

The work done to overcome the air resistance in one hour driving (90 km) can be calculated as

Wd = (217.5 N) (90 km) (1000 m/km)

   = 19575000 (Nm, J)

The power required to overcome the air resistance when driving 90 km/h can be calculated as

Pd = (217.5 N) (90 km/h) (1000 m/km) (1/3600 h/s)

    = 5436 (Nm/s, J/s, W)

    = 5.4 (kW)

Related Topics

  • Fluid Mechanics

    The study of fluids - liquids and gases. Involving velocity, pressure, density and temperature as functions of space and time.

Related Documents

Search

Search is the most efficient way to navigate the Engineering ToolBox.

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with older versions of the amazing SketchUp Make and the newer "up to date" SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp Make/Pro from the Extension Warehouse !

Translate this Page

Translate this page to Your Own Language .

About the Engineering ToolBox!

Privacy Policy

We don't collect information from our users. More about

We use a third-party to provide monetization technologies for our site. You can review their privacy and cookie policy here.

You can change your privacy settings by clicking the following button: .

Citation

This page can be cited as

  • The Engineering ToolBox (2004). Drag Coefficient. [online] Available at: https://www.engineeringtoolbox.com/drag-coefficient-d_627.html [Accessed Day Month Year].

Modify the access date according your visit.

3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Unit Converter

















































9.26.9

.