Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

This is an AMP page - Open full page! for all features.

Drag Coefficient

Sponsored Links

Any object moving through a fluid experiences drag - the net force in the direction of flow due to pressure and shear stress forces on the surface of the object.

The drag force can be expressed as:

Fd = cd 1/2 ρ v2 A                      (1)

where

Fd = drag force (N)

cd = drag coefficient

ρ = density of fluid (1.2 kg/m3 for air at NTP)

v = flow velocity (m/s)

A = characteristic frontal area of the body  (m2)

The drag coefficient is a function of several parameters like shape of the body, Reynolds Number for the flow, Froude number, Mach Number and Roughness of the Surface.

The characteristic frontal area - A - depends on the body.

Objects drag coefficients are mostly results of experiments. The drag coefficients for some common bodies are indicated below:

Drag Coefficients vs. Type of Objects
Type of ObjectDrag Coefficient
- cd -
Frontal Area
Laminar flat plate (Re=106) 0.001
Dolphin 0.0036 wetted area
Turbulent flat plate (Re=106) 0.005
Subsonic Transport Aircraft 0.012
Supersonic Fighter,M=2.5 0.016
Streamlined body 0.04 π / 4 d2
Airplane wing, normal position 0.05
Sreamlined half-body 0.09
Long stream-lined body 0.1
Bicycle - Streamlined Velomobile 0.12 5 ft2 (0.47 m2)
Airplane wing, stalled 0.15
Modern car like a Tesla model 3 or model Y 0.23
Toyota Prius, Tesla model S 0.24 frontal area
Tesla model X
Sports car, sloping rear 0.2 - 0.3 frontal area
Common car like Opel Vectra (class C) 0.29 frontal area
Hollow semi-sphere facing stream 0.38
Bird 0.4 frontal area
Solid Hemisphere 0.42 π / 4 d2
Sphere 0.5
Saloon Car, stepped rear 0.4 - 0.5 frontal area
Bike - Drafting behind an other cyclist 0.5 3.9 ft2 (0.36 m2)
Convertible, open top 0.6 - 0.7 frontal area
Bus 0.6 - 0.8 frontal area
Old Car like a T-ford 0.7 - 0.9 frontal area
Cube 0.8 s2
Bike - Racing 0.88 3.9 ft2 (0.36 m2)
Bicycle 0.9
Tractor Trailed Truck 0.96 frontal area
Truck 0.8 - 1.0 frontal area
Person standing 1.0 – 1.3
Bike - Upright Commuter 1.1 5.5 ft2 (0.51 m2)
Thin Disk 1.1 π / 4 d2
Solid Hemisphere flow normal to flat side 1.17 π / 4 d2
Squared flat plate at 90 deg 1.17
Wires and cables 1.0 - 1.3
Person (upright position) 1.0 - 1.3
Hollow semi-cylinder opposite stream 1.2
Ski jumper 1.2 - 1.3
Hollow semi-sphere opposite stream 1.42
Passenger Train 1.8 frontal area
Motorcycle and rider 1.8 frontal area
Long flat plate at 90 deg 1.98
Rectangular box 2.1

.

Example - Air Resistance Force acting on a Normal Car

The force required to overcome air resistance for a normal family car with drag coefficient 0.29 and frontal area 2 m2 in 90 km/h can be calculated as:

Fd = 0.29 1/2 (1.2 kg/m3) ((90 km/h) (1000 m/km) / (3600 s/h))2 (2 m2

   = 217.5 N

The work done to overcome the air resistance in one hour driving (90 km) can be calculated as

Wd = (217.5 N) (90 km) (1000 m/km)

   = 19575000 (Nm, J)

The power required to overcome the air resistance when driving 90 km/h can be calculated as

Pd = (217.5 N) (90 km/h) (1000 m/km) (1/3600 h/s)

    = 5436 (Nm/s, J/s, W)

    = 5.4 (kW)

Sponsored Links

Related Topics

Fluid Mechanics

The study of fluids - liquids and gases. Involving velocity, pressure, density and temperature as functions of space and time.

Related Documents

Car - Required Power and Torque

Power, torque, efficiency and wheel force acting on a car.

Car Fuel Consumption - liter/100 km

Calculate fuel consumption in liter per km - consumption chart and calculator.

Cars - New vs. Old Car Cost Calculator

Calculate and compare the costs between owning a new vs. an old car.

Driving Distances between European Cities

Driving distance between some major European cities.

Friction - Friction Coefficients and Calculator

Friction theory with calculator and friction coefficients for combinations of materials like ice, aluminum, steel, graphite and many more.

Froude Number

Introduction to the Froude Number.

Fuel Consumption - mpg

Calculate fuel consumption in miles per gallon - mpg - calculator and consumption charts.

Liquids - Kinematic Viscosities

Kinematic viscosities of some common liquids like motor oil, diesel fuel, peanut oil and many more.

Piston Engines - Compression Ratios

Cylinder volume and compression ratios in piston engines.

Piston Engines - Displacement

Calculate piston engine displacement.

Rolling Resistance

Rolling friction and rolling resistance.

Target - Volume Flow Meters

Introduction to the target flow meters principles.

Vehicle - Distance Traveled vs. Velcocity and Time Used (mph)

Speed (mph) and time (hours) and distance traveled (miles) chart.

Vehicle - Distance Traveled vs. Velocity and Time (km/h)

Speed (km/h) vs. time (hours) and distance traveled (km).

Viscosity - Converting Chart

Convert between viscosity units like Centiposes, milliPascal, CentiStokes and SSU.

Wind Load vs. Wind Speed

Wind load on surface - Wind load calculator.

Sponsored Links

Search Engineering ToolBox

  • the most efficient way to navigate the Engineering ToolBox!

SketchUp Extension - Online 3D modeling!

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp from the Sketchup Extension Warehouse!

Privacy

We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.