Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

This is an AMP page - Open full page! for all features.

• the most efficient way to navigate the Engineering ToolBox!

# Geometric Shapes - Areas

### Square

The area of a square can be calculated as

A = a2                            (1a)

The side of a square can be calculated as

a = A1/2                            (1b)

The diagonal of a square can be calculated as

d = a 21/2                        (1c)

### Rectangle

The area of a rectangle can be calculated as

A = a b          (2a)

The diagonal of a rectangle can be calculated as

d = (a2 + b2)1/2     (2b)

### Parallelogram

The area of a parallelogram can be calculated as

A = a h

= a b sin α                        (3a)

The diameters of a parallelogram can be calculated as

d1 = ((a + h cot α)2 + h2)1/2                      (3b)

d2 = ((a - h cot α)2 + h2)1/2                     (3b)

### Equilateral Triangle

An equilateral triangle is a triangle in which all three sides are equal.

The area of an equilateral triangle can be calculated as

A = a2/3 31/2                                 (4a)

The area of an equilateral triangle can be calculated as

h = a/2 31/2                              (4b)

### Triangle

The area of a triangle can be calculated as

A = a h / 2

= r s                                 (5a)

r = a h / 2s                          (5b)

R = b c / 2 h                        (5c)

s = (a + b + c) / 2                     (5d)

x = s - a                           (5e)

y = s - b                           (5f)

z = s - c                          (5g)

### Trapezoid

The area of a trapezoid can be calculated as

A = 1/2 (a + b) h

= m h                           (6a)

m = (a + b) / 2                      (6b)

### Hexagon

The area of a hexagon can be calculated as

A = 3/2 a2 31/2                             (7a)

d = 2 a

=  2 / 31/2

= 1.1547005 s                              (7b)

s = 31/2 / 2 d

= 0.866025 d                              (7c)

### Circle

The area of a circle can be calculated as

A = π/4 d2

= π r2

= 0.785.. d2                       (8a)

C = 2 π r

=  π d                           (8b)

where

C = circumference

### Sector and Segment of a Circle

#### Sector of Circle

Area of a sector of circle can be expressed as

A = 1/2 θr r2                            (9)

= 1/360 θd π r2

where

θd = angle in degrees

#### Segment of Circle

Area of a segment of circle can be expressed as

A = 1/2 (θr - sin θr) r2

= 1/2 (π θd/180 - sin θd) r2                             (10)

### Right Circular Cylinder

Lateral surface area of a right circular circle can be expressed as

A = 2 π r h                                      (11)

where

h = height of cylinder (m, ft)

r = radius of base (m, ft)

### Right Circular Cone

Lateral surface area of a right circular cone can be expressed as

A = π r l

= π r (r2 + h2)1/2                                   (12)

where

h = height of cone (m, ft)

r = radius of base (m, ft)

l = slant length (m, ft)

### Sphere

Lateral surface area of a sphere can be expressed as

A = 4 π r2                                    (13)

## Related Topics

### • Mathematics

Mathematical rules and laws - numbers, areas, volumes, exponents, trigonometric functions and more.

## Search Engineering ToolBox

• the most efficient way to navigate the Engineering ToolBox!

## SketchUp Extension - Online 3D modeling!

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp from the Sketchup Extension Warehouse!