Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Vapor and Steam

An introduction to vapor and steam.

Vapor is a gas - there is no significant physical or chemical difference between a vapor and a gas.

  • a vapor is a substance in gaseous state - at a condition where it is ordinarily a liquid or a solid

The most common example of a vapor is steam - water vaporized during boiling or vaporation. The water vapor in the atmosphere is invisible and is often called moist. Knowledge about moist in air is important for the design of air-condition applications - like HVAC systems and industrial dryers. Moist air technology is often called Air Psychrometrics.

Evaporation from a fluid takes place when liquid molecules at the liquid surface have enough momentum to overcome the intermolecular cohesive forces and escape to the atmosphere. When heat is added to a liquid the molecular momentum and the evaporation of the liquid is increased. A reduction of the pressure above a liquid reduces the momentum needed for molecules to escape and evaporation is increased.

  • increased pressure above a liquid - reduces evaporation

This can be observed as lower water boiling temperature at higher altitudes.

Common terms in connection with vapor and steam:

Boiling

  • Boiling is the formation of vapor bubbles within a fluid. Boiling is initiated when the absolute pressure in a fluid reaches vapor pressure.

Saturated Vapor

Wet Saturated Vapor

  • A wet saturated vapor carries liquid globules in suspension. A wet saturated vapor is a substance in the gaseous state which does not follow the general gas law.

Dry Saturated Vapor

  • A dry saturated vapor is free from liquid particles. All particles are vaporized - any decrease in vapor temperature or increase in vapor pressure, condensates liquid particles in the vapor. A dry saturated vapor is a substance in the gaseous state which does not follow the general gas law.

Super-heated Vapor

  • In super-heated vapor the temperature is higher than the boiling point temperature corresponding to the pressure. The superheated vapor can not exist in contact with the fluid, nor contain fluid particles. An increase in the pressure or decrease in the temperature will not - within limits - condensate out liquid particles in the vapor. Highly superheated vapors are gases that approximately follow the general gas law.

High Pressure Steam

  • Steam where the pressure greatly exceeds the atmosphere pressure.

Low Pressure Steam

  • Steam of which the pressure is less than, equal to, or not greatly above, atmospheric pressure.

Related Topics

  • Flash Steam

    Generation of flash steam in steam and condensate systems. Thermodynamic fundamentals, heat loss, energy recovery and more.
  • Gases and Compressed Air

    Properties of air, LNG, LPG and other common gases. Pipeline capacities and sizing of relief valves.
  • Steam and Condensate

    Design of steam & condensate systems with properties, capacities, sizing of pipe lines, system configuration and more.
  • Thermodynamics

    Calculate heat, work, temperature and energy. The thermodynamics of steam and condensate systems. Water and Ice properties.

Related Documents

Search

Search is the most efficient way to navigate the Engineering ToolBox.

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with older versions of the amazing SketchUp Make and the newer "up to date" SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp Make/Pro from the Extension Warehouse !

Translate this Page

Translate this page to Your Own Language .

About the Engineering ToolBox!

Privacy Policy

We don't collect information from our users. More about

We use a third-party to provide monetization technologies for our site. You can review their privacy and cookie policy here.

You can change your privacy settings by clicking the following button: .

Citation

This page can be cited as

  • The Engineering ToolBox (2003). Vapor and Steam. [online] Available at: https://www.engineeringtoolbox.com/vapor-steam-d_609.html [Accessed Day Month Year].

Modify the access date according your visit.

3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Unit Converter

















































9.26.9

.