Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Metals - Specific Heats

Specific heat of commonly used metals like aluminum, iron, mercury and many more - imperial and SI units.

The specific heat of metals and metalloids (semimetals) are given in the table below.

See also tabulated values for gases, food and foodstuff, common liquids and fluids, common solids and other common substances as well as values of molar specific heat for common organic substances and inorganic substances.

Metals - Specific Heats
MetalSpecific Heat
- cp -
(kJ/(kg K))

Aluminum 0.91
Antimony 0.21
Barium 0.20
Beryllium 1.83
Bismuth 0.13
Cadmium 0.23
Calsium 0.63
Carbon Steel 0.49
Cast Iron 0.46
Cesium 0.24
Chromium 0.46
Cobalt 0.42
Copper 0.39
Gallium 0.37
Germanium 0.32
Gold 0.13
Hafnium 0.14
Indium 0.24
Iridium 0.13
Iron 0.45
Lanthanum 0.195
Lead 0.13
Lithium 3.57
Lutetium 0.15
Magnesium 1.05
Manganese 0.48
Mercury 0.14
Molybdenum 0.25
Nickel 0.44
Niobium (Columbium) 0.27
Osmium 0.13
Palladium 0.24
Platinum 0.13
Plutonium 0.13
Potassium 0.75
Rhenium 0.14
Rhodium 0.24
Rubidium 0.36
Ruthenium 0.24
Scandium 0.57
Selenium 0.32
Silicon 0.71
Silver 0.23
Sodium 1.21
Strontium 0.30
Tantalum 0.14
Thallium 0.13
Thorium 0.13
Tin 0.21
Titanium 0.54
Tungsten 0.13
Uranium 0.12
Vanadium 0.39
Yttrium 0.30
Zinc 0.39
Zirconium 0.27
Wrought Iron 0.50

Metalloids - also known as semimetals - are elements containing properties similar and midway between metals and nonmetals.

  • 1 J/(kg K) = 2.389x10-4 kcal/(kg oC) = 2.389x10-4 Btu/(lbm oF)
  • 1 kJ/(kg K) = 0.2389 kcal/(kg oC) = 0.2389 Btu/(lbm oF) = 103 J/(kg oC) = 1 J/(g oC)
  • 1 Btu/(lbm oF) = 4186.8 J/ (kg K) = 1 kcal/(kg oC)
  • 1 kcal/(kg oC) = 4186.8 J/ (kg K) = 1 Btu/(lbm oF)

For conversion of units, use the Specific heat online unit converter.

See also tabulated values for Gases, Food and foodstuffCommon liquids and fluids, Common solids and other Common substances as well as values of molar specific heat for common organic substances and inorganic substances.

Heating Energy

The energy required to heat a product can be calculated as

q = cp m dt                                           (1)


q = heat required (kJ)

cp = specific heat (kJ/kg K, kJ/kg C°)

dt = temperature difference (K, C°)

Example - Heating Carbon Steel

2 kg of carbon steel is heated from 20 oC to 100 oC. The specific heat of carbon steel is 0.49 kJ/kgC° and the heat required can be calculated as

q = (0.49 kJ/kg oC) (2 kg) ((100 oC) - (20 oC)) 

     = 78.4 (kJ)

Related Topics

Related Documents


Search is the most efficient way to navigate the Engineering ToolBox.

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with older versions of the amazing SketchUp Make and the newer "up to date" SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp Make/Pro from the Extension Warehouse !

Translate this Page

Translate this page to Your Own Language .

About the Engineering ToolBox!

Privacy Policy

We don't collect information from our users. More about

We use a third-party to provide monetization technologies for our site. You can review their privacy and cookie policy here.

You can change your privacy settings by clicking the following button: .


This page can be cited as

  • The Engineering ToolBox (2003). Metals - Specific Heats. [online] Available at: [Accessed Day Month Year].

Modify the access date according your visit.

3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Unit Converter