Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Pump - Volume Flow and Temperature Rise

Calculate temperature rise in pumps

Sponsored Links

No pump is perfect with 100% efficiency. Energy lost in friction and hydraulic losses transforms to heat - heating up the fluid transported through the pump.

Pump power - SI and Imperial units

The temperature rise can be calculated as

dt = Ps (1 - μ) / (cp q ρ)                                       (1)

where

dt = temperature rise in the pump (oC)

q = volume flow through pump (m3/s)

Ps = brake power (kW)

cp = specific heat of the fluid (kJ/kgoC)

μ = pump efficiency

ρ = fluid density (kg/m3)

A typical relation between flow, efficiency and power consumption for a centrifugal pump:

Pump - power efficiency versus flow

Pump - Temperature Rise Calculator

Ps brake power (kW)

Example - Temperature rise in water pump

Temperature rise in a water pump working at normal conditions with flow 6 m3/h (0.0017 m3/s), brake power 0.11 kW and pump efficiency of 28% (0.28) can be calculated as

dt = (0.11 kW) (1 - 0.28) / ((4.2 kJ/kgoC) (0.0017 m3/s) (1000 kg/m3))

    = 0.011 oC

Specific heat of water cp = 4.2 kJ/kgoC.

If the flow through the pump is reduced by throttling the discharge valve the temperature rise increase. If the flow is reduced to 2 m3/h (0.00056 m3/s), brake power slightly reduced to 0.095 kW and the pump efficiency reduced to 15% (0.15) - the temperature rise can be calculated as

dt = (0.095 kW) (1 - 0.15) / ((4.2 kJ/kgoC) (0.00056 m3/s) (1000 kg/m3))

    = 0.035 oC

With manufacturing documentation the temperature rise versus throttling can be expressed as:

Pumps - throttling and temperature rise

Sponsored Links

Related Topics

Related Documents

Tag Search

  • en: pumps flow temperature increase
  • es: bombas de aumento de temperatura de impulsi√≥n
  • de: Pumpen Laufanhebung
Sponsored Links

Search the Engineering ToolBox

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro .Add the Engineering ToolBox extension to your SketchUp from the SketchUp Pro Sketchup Extension Warehouse!

Translate this page to
About the Engineering ToolBox!

Citation

This page can be cited as

  • Engineering ToolBox, (2006). Pump - Volume Flow and Temperature Rise. [online] Available at: https://www.engineeringtoolbox.com/pumps-temperature-increase-d_313.html [Accessed Day Mo. Year].

Modify access date.

Customize Ads in the ToolBox

Make ads more useful in Google Ad Settings .

. .

close

3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Scientific Online Calculator

Scientific Calculator

10 19

Sponsored Links
.