Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

This is an AMP page - Open full page! for all features.

• the most efficient way to navigate the Engineering ToolBox!

# Pump - Temperature Rise vs. Volume Flow

## Calculate temperature rise vs. volume flow in pumps.

No pump is perfect with 100% efficiency. Energy lost in friction and hydraulic losses transforms to heat - heating up the fluid transported through the pump.

The temperature rise can be calculated as

dt = Ps (1 - μ) / (cp q ρ)                                       (1)

where

dt = temperature rise in the pump (oC)

q = volume flow through pump (m3/s)

Ps = brake power (kW)

cp = specific heat of the fluid (kJ/kgoC)

μ = pump efficiency

ρ = fluid density (kg/m3)

A typical relation between flow, efficiency and power consumption for a centrifugal pump:

### Pump - Temperature Rise Calculator

Ps - brake power (kW)

μ - pump efficiency

cp - specific heat (kJ/kgoC)

q - volume flow (m3/s)

ρ - density (kg/m3)

### Example - Temperature rise in water pump

Temperature rise in a water pump working at normal conditions with flow 6 m3/h (0.0017 m3/s), brake power 0.11 kW and pump efficiency of 28% (0.28) can be calculated as

dt = (0.11 kW) (1 - 0.28) / ((4.2 kJ/kgoC) (0.0017 m3/s) (1000 kg/m3))

= 0.011 oC

Specific heat of water cp = 4.2 kJ/kgoC.

If the flow through the pump is reduced by throttling the discharge valve the temperature rise increase. If the flow is reduced to 2 m3/h (0.00056 m3/s), brake power slightly reduced to 0.095 kW and the pump efficiency reduced to 15% (0.15) - the temperature rise can be calculated as

dt = (0.095 kW) (1 - 0.15) / ((4.2 kJ/kgoC) (0.00056 m3/s) (1000 kg/m3))

= 0.035 oC

With manufacturing documentation the temperature rise versus throttling can be expressed as:

## Related Topics

• Pumps - Piping systems and pumps - centrifugal pumps, displacement pumps - cavitation, viscosity, head and pressure, power consumption and more.

## Search Engineering ToolBox

• the most efficient way to navigate the Engineering ToolBox!

## SketchUp Extension - Online 3D modeling!

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp from the Sketchup Extension Warehouse!

## Privacy

We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Temperature

oC
oF

Length

m
km
in
ft
yards
miles
naut miles

Area

m2
km2
in2
ft2
miles2
acres

Volume

m3
liters
in3
ft3
us gal

Weight

kgf
N
lbf

Velocity

m/s
km/h
ft/min
ft/s
mph
knots

Pressure

Pa (N/m2)
bar
mm H2O
kg/cm2
psi
inches H2O

Flow

m3/s
m3/h
US gpm
cfm

6 24