Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

This is an AMP page - Open full page! for all features.

Optimal Combustion Process - Fuels and Excess Air

Stable and efficient combustion conditions require correct mixture of fuels and oxygen

Sponsored Links

To understand efficient boiler operation the combustion process must be understood.

Stable combustion conditions requires right amounts of fuels and oxygen. The combustion products are heat energy, carbon dioxide, water vapor, nitrogen, and other gases (excluding oxygen). In theory there is a specific amount of oxygen needed to completely burn a given amount of fuel. In practice, burning conditions are never ideal.

Therefore, in practice more air than ideal must be supplied to burn all fuel completely. The amount of air more than the theoretical requirement is referred to as excess air.

Power plant boilers normally run about 10 to 20 percent excess air. Natural gas-fired boilers may run as low as 5 percent excess air. Pulverized coal-fired boilers may run with 20 percent excess air. Gas turbines runs very lean with up to 300 percent excess air.

Typical values of excess air for some commonly used fuels are shown in the table below:

FuelExcess of Air
(%)
Anthracite 40
Coke oven gas 5 - 10
Natural Gas 5 - 10
Coal, pulverized 15 - 20
Coal, stoker 20 - 30
Oil (No. 2 and No. 6) 10 to 20
Semi anthracite, hand firing 70 to 100
Semi anthracite, with stoker 40 to 70
Semi anthracite, with traveling grate 30 to 60

To determine the excess air at which the combustion system will operate we have to start with the stoichiometric air-fuel ratio known as the perfect or ideal fuel ratio - or stoichiometric combustion. With stoichiometric combustion there is

  • chemically correct mixing proportion between air and fuel
  • no fuel or air left over

In practice process heating equipment almost never runs stoichiometric. Even so-called "on-ratio" combustion, used in boilers and high temperature process furnaces incorporates a modest amount of excess air - 10 to 20% more than needed to burn the fuel completely.

If insufficient amount of air is supplied to the burner, unburned fuel, soot, smoke, and carbon monoxide are exhausted from the boiler. The results is heat transfer surface fouling, pollution, lower combustion efficiency, flame instability and a potential for explosion. To avoid inefficient and unsafe conditions, boilers normally operate at an excess air level. This excess air level also provides protection from insufficient oxygen conditions caused by variations in fuel composition and "operating slops" in the fuel-air control system.

Sponsored Links

Related Topics

Related Documents

Sponsored Links

Share

Search Engineering ToolBox

  • the most efficient way to navigate the Engineering ToolBox!

SketchUp Extension - Online 3D modeling!

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro .Add the Engineering ToolBox extension to your SketchUp from the Sketchup Extension Warehouse!

Privacy

We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.

Topics

Unit Converters

Temperature

oC
oF


Load Calculator!

Length

m
km
in
ft
yards
miles
naut miles


Load Calculator!

Area

m2
km2
in2
ft2
miles2
acres


Load Calculator!

Volume

m3
liters
in3
ft3
us gal


Load Calculator!

Weight

kgf
N
lbf


Load Calculator!

Velocity

m/s
km/h
ft/min
ft/s
mph
knots


Load Calculator!

Pressure

Pa (N/m2)
bar
mm H2O
kg/cm2
psi
inches H2O


Load Calculator!

Flow

m3/s
m3/h
US gpm
cfm


Load Calculator!

7 11

This website use cookies. By continuing to browse you are agreeing to our use of cookies! Learn more