Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

This is an AMP page - Open full page! for all features.

Combustion Efficiency and Excess Air

Sponsored Links

To ensure complete combustion of the fuel used combustion chambers are supplied with excess air. Excess air increase the amount of oxygen to the combustion and the combustion of fuel.

  • when fuel and oxygen from the air are in perfect balance - the combustion is said to be stoichiometric

The combustion efficiency increases with increased excess air - until the heat loss in the excess air is larger than the heat provided by more efficient combustion.

Typical excess air to achieve the highest possible efficiency for some common fuels:

  • 5 - 10% for natural gas
  • 5 - 20% for fuel oil
  • 15 - 60% for coal

Carbon dioxide - CO2 - is a combustion product and the content of CO2 in a flue gas is an important indication of the combustion efficiency.

Optimal content of carbon dioxide CO2 after combustion is approximately 10% for natural gas and approximately 13% for lighter oils.

Normal combustion efficiency for natural gas at different combinations of excess air and flue gas temperatures are indicated  below:

Combustion - Efficiency vs. Excess Oxygen/Air and Net Stack Temperature
Excess (%)Combustion Efficiency (%)
Net Stack Temperature1) (oF)
AirOxygen200300400500600
9.5 2.0 85.4 83.1 80.8 78.4 76.0
15 3.0 85.2 82.8 80.4 77.9 75.4
28.1 5.0 84.7 82.1 79.5 76.7 74.0
44.9 7.0 84.1 81.2 78.2 75.2 72.1
81.6 10.0 82.8 79.3 75.6 71.9 68.2

1) "Net stack temperature" is temperature difference between flue gas temperature inside the chimney and room temperature outside the burner.

Flue Gas Loss with Oil Combustion

The efficiency loss in the flue gas related to

  • temperature difference in flue gas and supply air
  • CO2 concentration in the flue gas

with oil combustion is indicated below:

Example - Oil Combustion and Heat Loss in the Flue Gas

If

  • the temperature difference between the flue gas leaving a boiler and the ambient supply temperature is 300 oC, and
  • the carbon dioxide measured in the flue gas is 10% - then,

from the diagram above

  • the flue gas loss can be estimated to approximately 16%.
Sponsored Links

Related Topics

Combustion

Combustion processes and their efficiency. Boiler house and chimney topics. Properties of fuels like oil, gas, coal and wood and more. Safety valves and tanks.

Related Documents

Boiler - Efficiency

Combustion gross and net calorific value.

Boiler Rooms - Sizing

Minimum area in a boiler room.

Carbon dioxide - Prandtl Number vs. Temperature and Pressure

Figures and table with changes in Prandtl number for carbon dioxide with changes in temperature and pressure.

Carbon Dioxide - Thermophysical Properties

Chemical, physical and thermal properties of carbon dioxide. Phase diagram included.

CO2 Calculator - Emissions from Trains

Calculator for CO2 emissions from trains, comparing with alternative forms of transportation (as plane, bus, conventional and electrical cars).

CO2 Calculator - Emissions from Airplanes

Calculator for CO2 emissions from planes, comparing with alternative forms of transportation (as train, bus, conventional and electrical cars).

CO2 Calculator - Emissions from Cars

Calculator for CO2 emissions from different kind of cars (gasoline, diesel, LPG, electrical), comparing with alternative forms of transportation (as airplane, bus and train).

Combustion of Fuels - Carbon Dioxide Emission

Environmental emission of carbon dioxide CO2 when combustion fuels like coal, oil, natural gas, LPG and bio energy.

Combustion Testing

Combusting testing of fuel oil and gas burners.

Efficiency

The measure of usefulness.

Flue Gases - Dew Point Temperatures

Flue gas dew point temperatures and condensation of water vapor.

Fossil vs. Alternative Fuels - Energy Content

Net (low) and gross (high) energy content in fossil and alternative fuels.

Fuels Flue Gases - Average Dew Points

Flue gas dew point temperatures for some fuels.

Heating Fuels - Cost Comparing

Cost comparison formulas for heating fuels like Natural Gas, Propane LP Gas, Fuel Oil and Electricity.

Intermittent Combustion and Boiler Efficiency

Efficiency reduction due to intermittent boiler operation.

Oxygen - Thermophysical properties

Chemical, Physical and Thermal Properties of Oxygen - O2.

Paraffins and Alkanes - Combustion Properties

Properties like heat values, air/fuel ratios, flame speed, flame temperatures, ignition temperatures, flash points and flammability limits.

Sponsored Links

Search Engineering ToolBox

  • the most efficient way to navigate the Engineering ToolBox!

SketchUp Extension - Online 3D modeling!

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp from the Sketchup Extension Warehouse!

Privacy

We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.