Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Elevators - Force and Power

Required force and power to lift an elevator.

Sponsored Links

Elevator lift - force power

Work done by Lifting the Elevator

The work done by lifting an elevator from one level to an other can be expressed as

W = m ag (h1 - h0)                     (1)


W = work done (J, ft lbf)

m = mass of elevator and passengers (kg, lbm)

ag = acceleration of gravity (9.81 m/s2, 32.17 ft/s2)

h1 = final elevation (m, ft)

h0 = initial elevation (m, ft)

The generic equation for work done by a force can be expressed as

W = Fc s                      (2)


W = work done by force (J, ft lbf)

Fc  = force acting on the elevator at constant speed (N, lbf)

s = distance moved by elevator (m, ft)

Forces acting on the Elevator

Since works done in (1) and (2) are equal - the equations can be combined to 

Fc s = m ag (h1 - h0)              (3)

Force at constant Speed

Since the difference in elevation and the distance moved by the force are equal - (3) can be modified to express the force required to move the elevator at constant speed to

Fc = m ag                      (4)

Force at start/stop

When the elevator starts or stops - the acceleration or deceleration force in addition to the constant speed force can be expressed as

Fa = m (v1 - v0) / ta                   (5)


Fa = acceleration force (N, lbf)

v1 = final velocity (m/s, ft/s)

v0 = initial velocity (m/s, ft/s)

ta = start or stop (acceleration) time (s)

Power required to move the Elevator

The power required to move the elevator can be calculated as

P = W / t   

  =   m ag (h1 - h0) / t               (6)


P = power (W, ft lbf)

t = time to move the elevator between levels (s)

Elevator - power vs. lifting height and lifting time chart

Example - Force and Power to Lift an Elevator

An elevator with mass 2000 kg including passengers are moved from level 0 m to level 15 m. The force required to move the elevator at constant speed can be calculated as

Fc = (2000 kg) (9.81 m/s2)

   = 19820 N

The power required to move the elevator between the levels in 20 s can be calculated as

P = (2000 kg) (9.81 m/s2) ((15 m) - (0 m)) / (20 s)

   = 14865 W

   = 14.9 kW

Sponsored Links

Related Topics

Related Documents

Sponsored Links

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro .Add the Engineering ToolBox extension to your SketchUp from the SketchUp Pro Sketchup Extension Warehouse!

About the Engineering ToolBox!


We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.


This page can be cited as

  • Engineering ToolBox, (2018). Elevators - Force and Power. [online] Available at: [Accessed Day Mo. Year].

Modify access date.

. .


3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Scientific Online Calculator

Scientific Calculator

3 10

Sponsored Links