Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

This is an AMP page - Open full page! for all features.

Stress in Thin-Walled Cylinders or Tubes

Sponsored Links

When a thin-walled tube or cylinder is subjected to internal pressure a hoop and longitudinal stress are produced in the wall.

For the thin walled equations below the wall thickness is less than 1/20 of tube or cylinder diameter.

Hoop (Circumferential) Stress

The hoop stress is acting circumferential and perpendicular to the axis and the radius of the cylinder wall. The hoop stress can be calculated as

σh = p d / (2 t)                         (1)

where

σh = hoop stress (MPa, psi)

p = internal pressure in the tube or cylinder (MPa, psi)

d = internal diameter of tube or cylinder (mm, in)

t = tube or cylinder wall thickness (mm, in)

Longitudinal (Axial) Stress

For a cylinder closed closed in both ends the internal pressure creates a force along the axis of the cylinder. The longitudinal stress caused by this force can be calculated as

σl = p d / (4 t)                               (2)

where

σl = longitudinal stress (MPa, psi)

Example - Stress in a Thin Walled Tube

The pressure in a thin walled tube with diameter 0.3 m and thickness 0.001 m is 1000 kPa (10 bar).

The hoop stress can be calculated 

σh = (1000 kPa) (0.3 m) / (2 (0.001 m))

    =  150000 kPa

    = 150 MPa  

The longitudinal stress can be calculated 

σh = (1000 kPa) (0.3 m) / (4 (0.001 m))

    =  75000 kPa

    = 75 MPa

Note that typical maximum allowable stress for carbon steel pipes is below 135 MPa.

Sponsored Links

Related Topics

Mechanics

The relationships between forces, acceleration, displacement, vectors, motion, momentum, energy of objects and more.

Statics

Forces acting on bodies at rest under equilibrium conditions - loads, forces and torque, beams and columns.

Related Documents

Fixed Pipes - Stress vs. Change in Temperature

Temperature changes introduces stress fixed pipes.

Process Pipes - Allowable Stress vs. Temperature

Allowable wall stress in pipes according ASME M31.3.

Rotating Bodies - Stress

Stress in rotating disc and ring bodies.

Rotating Shafts - Torque

Torsional moments acting on rotating shafts.

Stress

Stress is force applied on cross-sectional area.

Stress in Thick-Walled Cylinders or Tubes

Radial and tangential stress in thick-walled cylinders or tubes with closed ends - with internal and external pressure.

Stress, Strain and Young's Modulus

Stress is force per unit area - strain is the deformation of a solid due to stress.

Sponsored Links

Search Engineering ToolBox

  • the most efficient way to navigate the Engineering ToolBox!

SketchUp Extension - Online 3D modeling!

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp from the Sketchup Extension Warehouse!

Privacy

We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.