Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

This is an AMP page - Open full page! for all features.

Evaporative Cooling

Evaporative cooling tutorial.

Sponsored Links

In principle - the basic evaporating cooling system use only water and a blower to cool circulated air.

When warm, dry and unsaturated air is pulled through a water-saturated medium - water evaporates from the medium to vapor in the air. The evaporation energy comes from the air which is cooled down.

  • air humidity increase - and air temperature decrease

Evaporation differs from boiling and can be accomplished at a temperature lower than the boiling temperature of water because it occurs at the liquid-vapor interface.

Evaporative cooling can be implemented with

  • direct evaporative systems
  • indirect evaporative systems
  • hybrid systems with indirect and direct evaporative cooling units

Direct Evaporative Cooling Systems

In a direct evaporative cooling system - outside air is pulled through a water-saturated medium (typical cellulose) - or air is sprayed with water - and cooled by evaporation. The cooled air is circulated by a blower.

Moisture can be added to the air stream until saturation.

The Direct Evaporative Cooling Process in a Psychrometric Chart

Air at with dry bulb temperature 70 oF and relative moisture 60% (state A) is cooled down (state B) by evaporating water. The process is indicated in the psychrometric chart below.

With 100% humidification of the air - the dry bulb temperature will approach 61 oF.

The Direct Evaporative Cooling Process in a Mollier Diagram

Air with dry bulb temperature 30 oC and relative moisture 60% (state A) is cooled down (state B) by evaporating water. The process is indicated in the Mollier diagram below.

With 100% humidification of the air - the dry bulb temperature will approach 23.5 oC.

Indirect Evaporative Cooling Systems

In the indirect evaporative cooling system a secondary air stream is cooled down by evaporating water. The secondary air stream is then used to cool down the primary air in a heat exchanger.

Moisture is not added to the primary air and

  • the dry bulb temperature is reduced
  • the wet bulb temperature is reduced
  • relative humidity is increased
  • specific humidity is unchanged

Indirect Evaporative Cooling Process in the Psychrometric Chart

Air at state A with dry bulb temperature 70 oF and relative moisture 60% (state A) is cooled down to state B by a secondary air stream cooled by evaporating of water. The process is indicated in the psychrometric chart below.

With 100% humidification of the secondary air the dry bulb temperature of the primary air approaches 70 oF. The relative humidity of the primary air approaches 83%.

Indirect Evaporative Cooling Process in the Mollier Diagram

Air at state A with dry bulb temperature 30 oC and relative moisture 60% (state A) is cooled down to state B by a secondary air stream cooled by evaporating water. The process is indicated in the Mollier diagram below.

With 100% humidification of the secondary air the dry bulb temperature of the primary air approaches 23.5 oC. The relative humidity of the primary air approaches 86%.

Hybrid Evaporative Cooling Systems

Direct and indirect evaporating cooling units can be combined together in hybrid systems with serial connected indirect and direct evaporative units. In addition evaporation units can be combined with more energy consuming DX (Direct eXpansion) compressor cooling units.

Benefits of Evaporative Cooling Systems

Evaporative cooling systems

  • can be economical since the required size of a DX compressor cooling system can be reduced. Evaporation units reduces DX systems run time
  • can be more environmentally friendly than a DX system since they don't contain refrigerants
  • can be more effective than DX systems at higher temperatures

Note! - be aware that any water system with an operating temperature between 69 oF (20.5 oC) and 122 oF (50 oC) is a potential legionella source.

Sponsored Links

Related Topics

Related Documents

Sponsored Links

Share

Search Engineering ToolBox

  • the most efficient way to navigate the Engineering ToolBox!

SketchUp Extension - Online 3D modeling!

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp from the Sketchup Extension Warehouse!

Privacy

We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.

Topics

Unit Converters

Temperature

oC
oF


Load Calculator!

Length

m
km
in
ft
yards
miles
naut miles


Load Calculator!

Area

m2
km2
in2
ft2
miles2
acres


Load Calculator!

Volume

m3
liters
in3
ft3
us gal


Load Calculator!

Weight

kgf
N
lbf


Load Calculator!

Velocity

m/s
km/h
ft/min
ft/s
mph
knots


Load Calculator!

Pressure

Pa (N/m2)
bar
mm H2O
kg/cm2
psi
inches H2O


Load Calculator!

Flow

m3/s
m3/h
US gpm
cfm


Load Calculator!

3 30

This website use cookies. By continuing to browse you are agreeing to our use of cookies! Learn more