Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

This is an AMP page - Open full page! for all features.

Petroleum Products - Average Boiling Points

Sponsored Links

Boiling point: T he temperature at which a liquid turns into a gas

A mixture of different compounds boils over a certain range of temperature, reflecting the boiling point of each specific compound present in the mixture. For many purposes, it is suitably to calculate an average boiling point (ABP) of mixtures.

Then, the boiling point of each compound is weighted with regard to the fraction of the compound compared to the whole blend. There are several types of fractions that can be calculated: The mole fraction, the weight fraction and the volume fraction, and the type of fraction must be specified when the term average boiling point is used.  There is also a cubic average boiling temperature and a mean average boiling temperature . The definitions of each type of average boiling point are given by the formulas:

See also Average boiling point from gravity and molecular weight

Example: "Gasoline" mixture

Gasoline consists of branched paraffins, cycloparaffins and aromatics with carbon numbers typically from C 4 to C 12 .

A "simple" gasoline could then contain a mixture of iso-pentane, 3-methylpentane, iso-octane, meta-xylene and hexylcyclohexane. The table below shows calculations of the different kinds of average boiling points of a mixture containing the given volume fractions of the five compounds

.

For full table - rotate the screen!

Petroleum Products - Average Boiling Points
Compound Molweight Density@15°C Boiling point X vol #mol X mol Weight X w
g/mol g/cm3 °C cm3 /cm3 mol mol/mol g g/g
Iso-pentane 72.2 0.620 28 0.1 0.00086 0.13 0.062 0.084
3-methylpentane 86.2 0.660 63 0.2 0.00153 0.23 0.132 0.180
Iso-octane 114.2 0.690 99 0.3 0.00181 0.27 0.207 0.282
Meta-xylene 106.2 0.860 139 0.2 0.00162 0.24 0.172 0.234
Hexylcyclohexane 168.3 0.808 225 0.2 0.00096 0.14 0.162 0.220
MABP,  °C WABP,  °C VABP,  °C CABP,  °C MeABP,  °C
109.3 123.6 117.9 106.5 107.9

It can be seen that the WABP is biased against the densest components, while the MABP is biast against the lightest components.

However, a real gasoline contains hundreds of different compounds with individual properties, and a similar calculation is not possible to performe due to the complexity and lack of precise analytical tools.

The way to get past this restriction is to use a distillation curve obtained using a real distillation, as ASTM D86 , or a gas chromatographic analysis, as ASTM D2887, to calculate VABP or WABP and then, use agreed correction factors to find the other kinds of ABPs.

The table below shows results from a D86 and a D2887 analysis of a naphtha sample, and the calculated VABP and WABP and the slopes for the distillation curves, using the formulas:

VABP = 0.2*(T 10% + T 30% + T 50% + T 70% + T 90% )   from D86

WABP = 0.2*(T 10% + T 30% + T 50% + T 70% + T 90% )   from D2887

Slope = (T 90% - T 10% )/80

Naphta - D86 and D2887 Analysis
Fraction of sample recovered D86 D2887
Vol% (D86) or Wt% (D2887) °C °F °C °F
IBP 121 85
5 129 104
10 132 115
20 134 123
30 136 129
50 143 144
70 153 160
80 157 167
90 163 176
FBP 183 197
VABP 145 294
WABP 145 293
Slope, °C/% recovered 0.39 0.76
Slope, °F/% recovered 0.70 1.37


Correction factors are found by using the figures below. Note! The figures are using °C or °F, and results from D86.

.

The narrower the cut of the oil fraction (smaller slope), the smaller is the correction.











The figures show that the correction from a VABP of 294°F to MABP is -6°F for a sample with a slope of 0.7°F/% recovered. That gives a MABP of 288°F.

The correction from a VABP of 294°F to CABP is only -1.5°F for a sample with a slope of 0.7°F/% recovered. (To see more detailes, right hand click on the figure and choose view image)

Sponsored Links

Related Topics

Boiling Points of Fluids

Boiling points of elements, products and chemical species at varying conditions.

Fluid Mechanics

The study of fluids - liquids and gases. Involving velocity, pressure, density and temperature as functions of space and time.

Material Properties

Properties of gases, fluids and solids. Densities, specific heats, viscosities and more.

Related Documents

Alcohols and Carboxylic Acids - Physical Data

Molweight, melting and boiling point, density, pKa-values, as well as number of carbon and hydrogen atoms in molecules are given for 150 different alcohols and acids.

Crude Oil - Density vs. Temperature

Variations in crude oil density are shown as function of temperatur, together with volume correction factors.

Crude Oil Properties - Standard test methods (ASTM and others)

An overview of common test methods and typical ranges of variation of petroleum quality parameters. What, why and how do the different test?

Fuel Oils - Densities vs. Temperature

Variations in fuel oils density as function of temperatur, together with volume correction factors.

Gasoline - Density, Specific Heat, Viscosity and Thermal Conductivity vs. Temperature

Density, specific heat, dynamic and kinematic viscosity and thermal conductivity of gasoline vs. temperature

Hydrocarbon Mixtures - Average Boiling Points vs. Gravity and Molecular Weights

Formulas and examples of calculation of boiling point of hydrocarbon mixtures from gravity and molecular weight.

Hydrocarbon Mixtures - Molecular Weight vs. Gravity and Average Boiling Point

Formulas and examples of calculation of average molecular weight of hydrocarbon mixtures from gravity and average boiling point, achieved from distillation data.

Hydrocarbons - Physical Data

Molweight, melting and boiling point, density, flash point and autoignition temperature, as well as number of carbon and hydrogen atoms in each molecule for 200 different hydrocarbons.

Hydrocarbons - Melting Point vs. Molecular Weight

Calculate melting point of hydrocarbons from molecular weight (molar mass).

Hydrocarbons, Alcohols and Acids - Boiling points

Boiling temperatures (°C and °F) with varying carbon numbers up to C33.

Hydrocarbons, Linear Alcohols and Acids - Densities

Density of hydrocarbons like alcohols and acids as function of carbon number at 20°C / 68°.

Jet Fuel - Density vs. Temperature

Variations in jet fuel density as function of temperatur, together with volume correction factors.

Lubricating Oil - Densities vs. Temperature

Variations in lubricating oil density as function of temperatur, together with volume correction factors.

Organic Nitrogen Compounds - Physical Data

Boiling and melting points of amines, diamines, pyrroles, pyridines, piperidines and quinolines shown together with their molecular structures, as well as molweights and density.

Organic Sulfur Compounds - Densities

Liquid density of different kinds of organic sulfur compounds with varying carbon number (20°C/68°F). Comparison of thiols, sulfides, disulfides and thiophenes.

Organic Sulfur Compounds - Physical Data

Boiling and melting points of thoils, sulfides, disulfides and thiophenes shown together with molecular structures, as well as molweights and density.

Petroleum Products - Standard Test Methods (ASTM and others) and Specifications

An overview of common test methods and specifications of petroleum fuels. What, why and how do the different test?

Yield Structure of Crude Oils with Increasing Density of Crude

Yields of different crude oil distillation cuts are plotted as function of whole crude specific gravity. Fractions based on European and North American markets, and the typical differences in crude oil fractionation in the two markets are also shown.

Sponsored Links

Search Engineering ToolBox

  • the most efficient way to navigate the Engineering ToolBox!

SketchUp Extension - Online 3D modeling!

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp from the Sketchup Extension Warehouse!

Privacy

We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.