Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Fans - Efficiency and Power Consumption

Power consumption and typical efficiencies of fans

Fan Power Consumption

The ideal power consumption for a fan (without losses) can be expressed as

Pi = dp q                                          (1)

where

Pi = ideal power consumption (W)

dp = total pressure increase in the fan (Pa, N/m2)

q = air volume flow delivered by the fan (m3/s)

Power consumption at different air volumes and pressure increases are indicated below:

fan power consumption

Note! For detailed engineering - use manufacturers specifications for actual fans.

Fan Efficiency

The fan efficiency is the ratio between power transferred to airflow and the power used by the fan. The fan efficiency is in general independent of the air density and can be expressed as:

μf = dp q / P                                     (2)

where

μf = fan efficiency (values between 0 - 1)

dp = total pressure (Pa)

q = air volume delivered by the fan (m3/s)

P = power used by the fan (W, Nm/s)

The power used by the fan can be expressed as:

P = dp q / μf                                     (3)

The power used by the fan can also be expressed as:

P = dp q / (μf  μb μm)                                 (4)

where

μb = belt efficiency

μm = motor efficiency

Typical motor and belt efficiencies:

  • Motor 1kW - 0.4
  • Motor 10 kW - 0.87
  • Motor 100 kW - 0.92
  • Belt 1 kW - 0.78
  • Belt 10 kW - 0.88
  • Belt 100 kW - 0.93

Power Consumption - Imperial Units

Fan energy use can also be expressed as

Pcfm = 0.1175 qcfm dpin / f  μb μm)                                (4b)

where

Pcfm = power consumption (W)

qcfm =  volume flow (cfm)

dpin = pressure increase (in. WG)

Fan and Installation Loss (System Loss)

The installation of a fan will influence on the overall system efficiency

dpsy = xsy pd                              (5)

where

dpsy = installation loss (Pa)

xsy = installation loss coefficient

pd = dynamic pressure in the nominal intake and outlet of the fan (Pa)

Fan and Temperature Increase

Near all of the energy lost in a fan will heat up the air flow and the temperature increase can be expressed like

dt = dp / 1000                              (6)

where

dt = temperature increase (K)

dp = increased pressure head (Pa)

Standards for Fan Efficiency

  • ISO 12759 "Fans – Efficiency classification for fans"
  • AMCA 205 "Energy Efficiency Classification for fans"

Related Topics

  • Ventilation Systems

    Design of systems for ventilation and air handling - air change rates, ducts and pressure drops, charts and diagrams and more.

Related Documents

Search

Search is the most efficient way to navigate the Engineering ToolBox.

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with older versions of the amazing SketchUp Make and the newer "up to date" SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp Make/Pro from the Extension Warehouse !

Translate this Page

Translate this page to Your Own Language .

About the Engineering ToolBox!

Privacy Policy

We don't collect information from our users. More about

We use a third-party to provide monetization technologies for our site. You can review their privacy and cookie policy here.

You can change your privacy settings by clicking the following button: .

Citation

This page can be cited as

  • The Engineering ToolBox (2003). Fans - Efficiency and Power Consumption. [online] Available at: https://www.engineeringtoolbox.com/fans-efficiency-power-consumption-d_197.html [Accessed Day Month Year].

Modify the access date according your visit.

3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Unit Converter

















































6.3.17

.