Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

# Solids - Volumes and Surfaces

## Volume and surface of solids like rectangular prism, cylinder, pyramid, cone and sphere - online calculator

### Cube #### Volume

V = a3                                (1)

where

V = volume (m3, ft3)

a = side (m, ft)

#### Surface Area

A0 = 6 a2                               (1b)

where

A0 = surface area (m2, ft2)

#### Diagonal

d = a 31/2                               (1c)

where

d = inside diagonal (m, ft)

#### Diagonal of Cube Face

ds = a 21/2                            (1d)

### Cuboid - Square Prism #### Volume

V = a b c                                    (2)

where

V = volume of solid (m3, ft3)

a = length of rectangular prism (m, ft)

b = width of rectangular prism (m, ft)

c = height of rectangular prism (m, ft)

#### Diagonal

d =  (a2 + b2 + c2)1/2                                 (2b)

#### Surface Area

A0 = 2 (a b + a c + b c)                                   (2c)

where

A0 = surface area of solid (m2, ft2)

length

width

height

Volume:

Surface:

### Parallelepiped #### Volume

V = A1 h                                    (3a)

where

A1 = side area (m2, ft2)

### Related Sketchup Components from The Engineering ToolBox • Geometric Figures - Cylinders, Boxes, Cones, Planes, Spheres, Lines, Curves and more..

- free Engineering ToolBox plugin for use with the amazing Sketchup 3D drawing/model application.

### Cylinder #### Volume

V = π r2 h = (π / 4) d2                       (4a)

where

d = diameter of cylinder (m, ft)

r = radius of cylinder (m, ft)

h = height of cylinder (m, ft)

#### Surface

A = 2 π r h + 2 π r2                          (4b)

height

Volume:

Surface:

### Hollow Cylinder #### Volume

V = π/4 h (D2 - d2)                               (5)

### Pyramid #### Volume

V = 1/3 h A1                      (6)

where

A1 = area of base (m2, ft2)

h = perpendicular height of pyramid (m, ft)

#### Surface

A = ∑ sum of areas of triangles forming sides + Ab                           (6b)

where

the surface areas of the triangular faces will have different formulas for different shaped bases

area of base

perpendicular height

Volume:

### Frustum of Pyramid ### Volume

V = h/3 ( A1 + A2 + (A1 A2)1/2)                                     (7)

### Cone #### Volume

V = 1/3 π r2 h                              (8a)

where

r = radius of cone base (m, ft)

h = height of cone (m, ft)

#### Surface

A = π r l + π r2                              (8b)

where

l = (r2 + h2)1/2 = length of cone side (m, ft)

height

Volume:

Surface:

#### Side

m = (h2 + r2)1/2                             (8c)

A2 / A1 = x2 / h2                             (8d)

### Frustum of Cone #### Volume

V = π/12 h (D2 + D d + d2)                              (9a)

m = ( ( (D - d) / 2 )2 + h2)1/2                                (9c)

### Sphere #### Volume

V = 4/3 π r3

= 1/6 π d3                                    (10a)

where

r = radius of sphere (m, ft)

A = 4 π r2

= π d2     (10b)

Volume:

Surface:

#### Spheres with Fractional Diameters - Surface Area and Volume

Fraction Diameter
- d –
(inch)
Decimal Diameter
- d –
(inch)
– r –
(inch)
Surface Area
- A –
(in2)
Volume
- V -
(in3)
1/64 0.015625 0.007813 0.0007670 0.0000020
1/32 0.031250 0.015625 0.0030680 0.0000160
3/64 0.046875 0.023438 0.0069029 0.0000539
1/64 0.062500 0.031250 0.0122718 0.0001278
5/64 0.078125 0.039063 0.0191748 0.0002497
3/32 0.093750 0.046875 0.0276117 0.0004314
7/64 0.109375 0.054688 0.0375825 0.0006851
1/8 0.125000 0.062500 0.0490874 0.0010227
9/64 0.140625 0.070313 0.0621262 0.0014561
5/32 0.156250 0.078125 0.0766990 0.0019974
11/64 0.171875 0.085938 0.0928058 0.0026585
3/16 0.187500 0.093750 0.1104466 0.0034515
13/64 0.203125 0.101563 0.1296214 0.0043882
7/32 0.218750 0.109375 0.1503301 0.0054808
15/64 0.234375 0.117188 0.1725728 0.0067411
1/4 0.250000 0.125000 0.1963495 0.0081812
17/64 0.265625 0.132813 0.2216602 0.0098131
9/32 0.281250 0.140625 0.2485049 0.0116487
19/64 0.296875 0.148438 0.2768835 0.0137000
5/16 0.312500 0.156250 0.3067962 0.0159790
21/64 0.328125 0.164063 0.3382428 0.0184977
11/32 0.343750 0.171875 0.3712234 0.0212680
23/64 0.359375 0.179688 0.4057379 0.0243020
3/8 0.375000 0.187500 0.4417865 0.0276117
25/64 0.390625 0.195313 0.4793690 0.0312089
13/32 0.406250 0.203125 0.5184855 0.0351058
27/64 0.421875 0.210938 0.5591360 0.0393142
7/16 0.437500 0.218750 0.6013205 0.0438463
29/64 0.453125 0.226563 0.6450389 0.0487139
15/32 0.468750 0.234375 0.6902914 0.0539290
31/64 0.484375 0.242188 0.7370778 0.0595037
1/2 0.500000 0.250000 0.7853982 0.0654498
33/64 0.515625 0.257813 0.8352525 0.0717795
17/32 0.531250 0.265625 0.8866409 0.0785047
35/64 0.546875 0.273438 0.9395632 0.0856373
9/16 0.562500 0.281250 0.9940196 0.0931893
37/64 0.578125 0.289063 1.0500098 0.1011728
19/32 0.593750 0.296875 1.1075341 0.1095997
39/64 0.609375 0.304688 1.1665924 0.1184820
5/8 0.625000 0.312500 1.2271846 0.1278317
41/64 0.640625 0.320313 1.2893109 0.1376608
21/32 0.656250 0.328125 1.3529711 0.1479812
43/64 0.671875 0.335938 1.4181652 0.1588050
11/16 0.687500 0.343750 1.4848934 0.1701440
45/64 0.703125 0.351563 1.5531555 0.1820104
23/32 0.718750 0.359375 1.6229517 0.1944161
47/64 0.734375 0.367188 1.6942818 0.2073730
3/4 0.750000 0.375000 1.7671459 0.2208932
49/64 0.765625 0.382813 1.8415439 0.2349887
25/32 0.781250 0.390625 1.9174760 0.2496714
51/64 0.796875 0.398438 1.9949420 0.2649532
13/16 0.812500 0.406250 2.0739420 0.2808463
53/64 0.828125 0.414063 2.1544760 0.2973626
27/32 0.843750 0.421875 2.2365440 0.3145140
55/64 0.859375 0.429688 2.3201459 0.3323126
7/8 0.875000 0.437500 2.4052819 0.3507703
57/64 0.890625 0.445313 2.4919518 0.3698991
29/32 0.906250 0.453125 2.5801557 0.3897110
59/64 0.921875 0.460938 2.6698936 0.4102180
15/16 0.937500 0.468750 2.7611654 0.4314321
61/64 0.953125 0.476563 2.8539713 0.4533652
31/32 0.968750 0.484375 2.9483111 0.4760294
63/64 0.984375 0.492188 3.0441849 0.4994366
1 1.000000 0.500000 3.1415927 0.5235988

### Zone of a Sphere V = π/6 h (3a2 + 3b2 + h)                             (11a)

Am = 2 π r h    (11b)

A0 = π (2 r h + a2 + b2)                               (11c)

### Segment of a Sphere V = π/6 h (3/4 s2 + h2

=   π h2 (r - h/3)                                  (12a)

Am = 2 π r h

π/4 (s2 + 4 h2)                               (12b)

### Sector of a Sphere V = 2/3 π r2 h                            (13a)

A0 = π/2 r (4 h + s)                          (13b)

### Sphere with Cylindrical Boring V = π/6  h3                               (14a)

A0 = 4 π ((R + r)3 (R - r))1/2

= 2 π h (R + r)                                (14b)

h = 2 (R2 - r2)1/2                                 (14c)

### Sphere with Conical Boring V = 2/3 π R2 h                           (15a)

A0 = 2 π R (h + (R2 - h2/4)1/2)                              (15b)

h = 2 (R2 - r2)1/2                           (15c)

### Torus V = π2/4 D d2                           (16a)

A0 = π2 D d                            (16b)

### Sliced Cylinder V = π/4 d2 h

= π r2 ((h1 + h2) / 2)                           (17a)

Am = π d h

= 2 π r ((h1 + h2) / 2)                          (17b)

where

Am = side walls area

A0 = π r (h1 + h2 + r + (r2 + (h1 - h2)2/4)1/2)                                (17c)

where

A0 = surface area

### Ungula V = 2/3 r2 h            (18a)

Am = 2 r h              (18b)

A0 = Am + π/2 r2 + π/2 r (r2 + h2)1/2                                      (18c)

### Barrel V ≈ π/12 h (2 D2 + d2)                                  (19a)

## Related Topics

• Basics - The SI-system, unit converters, physical constants, drawing scales and more
• Mathematics - Mathematical rules and laws - numbers, areas, volumes, exponents, trigonometric functions and more

## Tag Search

• en: volume surface solids rectangular prism cylinder pyramid cone sphere
• es: sólidos de superficie volumen prisma rectangular esfera cono de pirámide cilindro
• de: Volumenfeststoffoberfläche rechteckiges Prisma Zylinder Pyramide Kegel Kugel

## Engineering ToolBox - SketchUp Extension - Online 3D modeling!

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro .Add the Engineering ToolBox extension to your SketchUp from the SketchUp Pro Sketchup Extension Warehouse!

About the Engineering ToolBox!

## Privacy

We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

## Citation

• Engineering ToolBox, (2008). Solids - Volumes and Surfaces. [online] Available at: https://www.engineeringtoolbox.com/surface-volume-solids-d_322.html [Accessed Day Mo. Year].

Modify access date.

. .

#### Scientific Online Calculator 9 13