Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Solids - Volumes and Surfaces

Volume and surface of solids like rectangular prism, cylinder, pyramid, cone and sphere - online calculator

Sponsored Links

Cube

 

Cube - volume and surface area

Volume

V = a3                                (1)

where

V = volume (m3, ft3)

a = side (m, ft)

Surface Area

A0 = 6 a2                               (1b)

where

A0 = surface area (m2, ft2)

Diagonal

d = a 31/2                               (1c)

where

d = inside diagonal (m, ft)

Diagonal of Cube Face

ds = a 21/2                            (1d)

Cuboid - Square Prism

Rectangular prism - volume and surface area

Volume

V = a b c                                    (2)

where

V = volume of solid (m3, ft3)

a = length of rectangular prism (m, ft)

b = width of rectangular prism (m, ft)

c = height of rectangular prism (m, ft)

Diagonal

d =  (a2 + b2 + c2)1/2                                 (2b)

Surface Area

A0 = 2 (a b + a c + b c)                                   (2c)

where

A0 = surface area of solid (m2, ft2)

length

width

height

Volume:  

Surface:  

Parallelepiped

Parallelepiped - volume and surface area

Volume

V = A1 h                                    (3a)

where

A1 = side area (m2, ft2)

Related Sketchup Components from The Engineering ToolBox Engineering Toolbox Apps

  • Engineering ToolBox Sketchup - Common Geometric Figures Geometric Figures - Cylinders, Boxes, Cones, Planes, Spheres, Lines, Curves and more..

- free Engineering ToolBox plugin for use with the amazing Sketchup 3D drawing/model application.

Cylinder

Cylinder - volume and surface area

Volume

V = π r2 h = (π / 4) d2                       (4a)

where

d = diameter of cylinder (m, ft)

r = radius of cylinder (m, ft)

h = height of cylinder (m, ft)

Surface

A = 2 π r h + 2 π r2                          (4b)

radius

height

Volume:  

Surface:  

Hollow Cylinder

Hollow cylinder - volume and surface area

Volume

V = π/4 h (D2 - d2)                               (5)

Pyramid

Pyramid - volume and surface area

Volume

V = 1/3 h A1                      (6)

where

A1 = area of base (m2, ft2)

h = perpendicular height of pyramid (m, ft)

Surface

A = ∑ sum of areas of triangles forming sides + Ab                           (6b)

where

the surface areas of the triangular faces will have different formulas for different shaped bases

area of base

perpendicular height

Volume:  

Frustum of Pyramid

Frustum of pyramid - volume and surface area

Volume

V = h/3 ( A1 + A2 + (A1 A2)1/2)                                     (7)

Cone

Cone - volume and surface area

Volume

V = 1/3 π r2 h                              (8a)

where

r = radius of cone base (m, ft)

h = height of cone (m, ft)

Surface

A = π r l + π r2                              (8b)

where

l = (r2 + h2)1/2 = length of cone side (m, ft)

radius

height

Volume:  

Surface:  

Side

m = (h2 + r2)1/2                             (8c)

 

A2 / A1 = x2 / h2                             (8d)

Frustum of Cone

Frustum of cone - volume and surface area

Volume

V = π/12 h (D2 + D d + d2)                              (9a)

m = ( ( (D - d) / 2 )2 + h2)1/2                                (9c)

Sphere

Sphere - volume and surface area

Volume

V = 4/3 π r3  

= 1/6 π d3                                    (10a)

where

r = radius of sphere (m, ft)

Surface

A = 4 π r2 

= π d2     (10b)

radius

Volume:  

Surface:  

Spheres with Fractional Diameters - Surface Area and Volume

Fraction Diameter
- d –
(inch)
Decimal Diameter
- d –
(inch)
Decimal Radius
– r –
(inch)
Surface Area
- A –
(in2)
Volume
- V -
(in3)
1/64 0.015625 0.007813 0.0007670 0.0000020
1/32 0.031250 0.015625 0.0030680 0.0000160
3/64 0.046875 0.023438 0.0069029 0.0000539
1/64 0.062500 0.031250 0.0122718 0.0001278
5/64 0.078125 0.039063 0.0191748 0.0002497
3/32 0.093750 0.046875 0.0276117 0.0004314
7/64 0.109375 0.054688 0.0375825 0.0006851
1/8 0.125000 0.062500 0.0490874 0.0010227
9/64 0.140625 0.070313 0.0621262 0.0014561
5/32 0.156250 0.078125 0.0766990 0.0019974
11/64 0.171875 0.085938 0.0928058 0.0026585
3/16 0.187500 0.093750 0.1104466 0.0034515
13/64 0.203125 0.101563 0.1296214 0.0043882
7/32 0.218750 0.109375 0.1503301 0.0054808
15/64 0.234375 0.117188 0.1725728 0.0067411
1/4 0.250000 0.125000 0.1963495 0.0081812
17/64 0.265625 0.132813 0.2216602 0.0098131
9/32 0.281250 0.140625 0.2485049 0.0116487
19/64 0.296875 0.148438 0.2768835 0.0137000
5/16 0.312500 0.156250 0.3067962 0.0159790
21/64 0.328125 0.164063 0.3382428 0.0184977
11/32 0.343750 0.171875 0.3712234 0.0212680
23/64 0.359375 0.179688 0.4057379 0.0243020
3/8 0.375000 0.187500 0.4417865 0.0276117
25/64 0.390625 0.195313 0.4793690 0.0312089
13/32 0.406250 0.203125 0.5184855 0.0351058
27/64 0.421875 0.210938 0.5591360 0.0393142
7/16 0.437500 0.218750 0.6013205 0.0438463
29/64 0.453125 0.226563 0.6450389 0.0487139
15/32 0.468750 0.234375 0.6902914 0.0539290
31/64 0.484375 0.242188 0.7370778 0.0595037
1/2 0.500000 0.250000 0.7853982 0.0654498
33/64 0.515625 0.257813 0.8352525 0.0717795
17/32 0.531250 0.265625 0.8866409 0.0785047
35/64 0.546875 0.273438 0.9395632 0.0856373
9/16 0.562500 0.281250 0.9940196 0.0931893
37/64 0.578125 0.289063 1.0500098 0.1011728
19/32 0.593750 0.296875 1.1075341 0.1095997
39/64 0.609375 0.304688 1.1665924 0.1184820
5/8 0.625000 0.312500 1.2271846 0.1278317
41/64 0.640625 0.320313 1.2893109 0.1376608
21/32 0.656250 0.328125 1.3529711 0.1479812
43/64 0.671875 0.335938 1.4181652 0.1588050
11/16 0.687500 0.343750 1.4848934 0.1701440
45/64 0.703125 0.351563 1.5531555 0.1820104
23/32 0.718750 0.359375 1.6229517 0.1944161
47/64 0.734375 0.367188 1.6942818 0.2073730
3/4 0.750000 0.375000 1.7671459 0.2208932
49/64 0.765625 0.382813 1.8415439 0.2349887
25/32 0.781250 0.390625 1.9174760 0.2496714
51/64 0.796875 0.398438 1.9949420 0.2649532
13/16 0.812500 0.406250 2.0739420 0.2808463
53/64 0.828125 0.414063 2.1544760 0.2973626
27/32 0.843750 0.421875 2.2365440 0.3145140
55/64 0.859375 0.429688 2.3201459 0.3323126
7/8 0.875000 0.437500 2.4052819 0.3507703
57/64 0.890625 0.445313 2.4919518 0.3698991
29/32 0.906250 0.453125 2.5801557 0.3897110
59/64 0.921875 0.460938 2.6698936 0.4102180
15/16 0.937500 0.468750 2.7611654 0.4314321
61/64 0.953125 0.476563 2.8539713 0.4533652
31/32 0.968750 0.484375 2.9483111 0.4760294
63/64 0.984375 0.492188 3.0441849 0.4994366
1 1.000000 0.500000 3.1415927 0.5235988

Zone of a Sphere

Zone of a sphere - volume and surface area

V = π/6 h (3a2 + 3b2 + h)                             (11a)

Am = 2 π r h    (11b)

A0 = π (2 r h + a2 + b2)                               (11c)

Segment of a Sphere

Segment of a sphere - volume of surface area

V = π/6 h (3/4 s2 + h2

=   π h2 (r - h/3)                                  (12a)

Am = 2 π r h  

π/4 (s2 + 4 h2)                               (12b)

Sector of a Sphere

Sector of a sphere - volume and surface area

V = 2/3 π r2 h                            (13a)

A0 = π/2 r (4 h + s)                          (13b)

Sphere with Cylindrical Boring

Sphere with cylindrical boring - volume and surface area

V = π/6  h3                               (14a)

A0 = 4 π ((R + r)3 (R - r))1/2  

= 2 π h (R + r)                                (14b)

h = 2 (R2 - r2)1/2                                 (14c)

Sphere with Conical Boring

Sphere with conical boring - volume and surface area

V = 2/3 π R2 h                           (15a)

A0 = 2 π R (h + (R2 - h2/4)1/2)                              (15b)

h = 2 (R2 - r2)1/2                           (15c)

Torus

Torus - volume and surface area

V = π2/4 D d2                           (16a)

A0 = π2 D d                            (16b)

Sliced Cylinder

Sliced cylinder - volume and surface area

V = π/4 d2 h  

   = π r2 ((h1 + h2) / 2)                           (17a)

Am = π d h   

     = 2 π r ((h1 + h2) / 2)                          (17b)

where

Am = side walls area

A0 = π r (h1 + h2 + r + (r2 + (h1 - h2)2/4)1/2)                                (17c)

where

A0 = surface area

Ungula

Ungula - volume and surface area

V = 2/3 r2 h            (18a)

Am = 2 r h              (18b)

A0 = Am + π/2 r2 + π/2 r (r2 + h2)1/2                                      (18c)

Barrel

Barrel - volume and surface area

V ≈ π/12 h (2 D2 + d2)                                  (19a)

Sponsored Links

Related Topics

Related Documents

Tag Search

  • en: volume surface solids rectangular prism cylinder pyramid cone sphere
  • es: sólidos de superficie volumen prisma rectangular esfera cono de pirámide cilindro
  • de: Volumenfeststoffoberfläche rechteckiges Prisma Zylinder Pyramide Kegel Kugel
Sponsored Links

Search the Engineering ToolBox

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro .Add the Engineering ToolBox extension to your SketchUp from the SketchUp Pro Sketchup Extension Warehouse!

Translate this page to
About the Engineering ToolBox!

Citation

This page can be cited as

  • Engineering ToolBox, (2008). Solids - Volumes and Surfaces. [online] Available at: https://www.engineeringtoolbox.com/surface-volume-solids-d_322.html [Accessed Day Mo. Year].

Modify access date.

Customize Ads in the ToolBox

Make ads more useful in Google Ad Settings .

. .

close

3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Scientific Online Calculator

Scientific Calculator

6 22

Sponsored Links
.