# Normal Flange I-Beams

An I-beam is a structural steel shape used as critical framework in the metal building industry. Used in a range of constructions like bridges, ware houses, skyscrapers and more.

DIN 1025 normal flange I beams properties:

For full table with Static Parameters - Moment of Inertia and Elastic Section Modulus -** rotate the screen!**

Designation | Dimensions | Static Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|

Moment of Inertia | Elastic Section Modulus | ||||||||

Depth h (mm) | Width w (mm) | Web Thickness s (mm) | Sectional Area(cm^{2}) | Weight(kg/m) | I_{x }(cm^{4}) | I_{y}_{ }(cm^{4}) | W_{x}_{ }(cm^{3}) | W_{y}_{ }(cm^{3}) | |

I 80 | 80 | 42 | 3.9 | 7.58 | 5.94 | 77.8 | 6.29 | 19.5 | 3 |

I 100 | 100 | 50 | 4.5 | 10.6 | 8.34 | 171 | 12.2 | 34.2 | 4.88 |

I 120 | 120 | 58 | 5.1 | 14.2 | 11.1 | 328 | 21.5 | 54.7 | 7.41 |

I 140 | 140 | 66 | 5.7 | 18.3 | 14.3 | 573 | 35.2 | 81.9 | 10.7 |

I 160 | 160 | 74 | 6.3 | 22.8 | 17.9 | 935 | 54.7 | 117 | 14.8 |

I 180 | 180 | 82 | 6.9 | 27.9 | 21.9 | 1450 | 81.3 | 161 | 19.8 |

I 200 | 200 | 90 | 7.5 | 33.5 | 26.2 | 2140 | 117 | 214 | 26 |

I 220 | 220 | 98 | 8.1 | 39.6 | 31.1 | 3060 | 162 | 278 | 33.1 |

I 240 | 240 | 106 | 8.7 | 46.1 | 36.2 | 4250 | 221 | 354 | 41.7 |

I 260 | 260 | 113 | 9.4 | 53.4 | 41.9 | 5740 | 288 | 442 | 51 |

I 300 | 300 | 125 | 10.8 | 69.1 | 54.2 | 9800 | 451 | 653 | 72.2 |

I 340 | 340 | 137 | 12.2 | 86.8 | 68 | 15700 | 674 | 923 | 98.4 |

I 360 | 360 | 143 | 13 | 97.1 | 76.1 | 19610 | 818 | 1090 | 114 |

I 400 | 400 | 155 | 14.4 | 118 | 92.4 | 29210 | 1160 | 1460 | 149 |

I 450 | 450 | 170 | 16.2 | 147 | 115 | 45850 | 1730 | 2040 | 203 |

I 500 | 500 | 185 | 18 | 180 | 141 | 68740 | 2480 | 2750 | 268 |

*1 cm*^{4}= 10^{4}mm^{4}= 10^{-8}m^{4}= 0.024 in^{4}*1 cm*^{3}= 10^{3}mm^{3}= 10^{-6}m^{3}= 0.061 in^{3}*1 cm*^{2}= 10^{2}mm^{2}= 10^{-4}m^{2}= 0.16 in^{2}*1 kg/m = 0.67 lb/ft*

I-shaped cross-section beams:

- Britain : Universal Beams (UB) and Universal Columns (UC)
- Europe : IPE. HE. HL. HD and other sections
- US : Wide Flange (WF) and H sections

### Insert beams to your Sketchup model with the Engineering ToolBox Sketchup Extension

## Related Topics

### • Beams and Columns

Deflection and stress in beams and columns, moment of inertia, section modulus and technical information.

### • Mechanics

The relationships between forces, acceleration, displacement, vectors, motion, momentum, energy of objects and more.

## Related Documents

### Aluminum I-Beams

Dimensions and static properties of aluminum I-beams - Imperial units.

### American Standard Beams - S Beam

American Standard Beams ASTM A6 - Imperial units.

### American Wide Flange Beams

American Wide Flange Beams ASTM A6 in metric units.

### Area Moment of Inertia - Typical Cross Sections I

Typical cross sections and their Area Moment of Inertia.

### Area Moment of Inertia - Typical Cross Sections II

Area Moment of Inertia, Moment of Inertia for an Area or Second Moment of Area for typical cross section profiles.

### Beam Loads - Support Force Calculator

Calculate beam load and supporting forces.

### Beams - Fixed at Both Ends - Continuous and Point Loads

Stress, deflections and supporting loads.

### Beams - Fixed at One End and Supported at the Other - Continuous and Point Loads

Supporting loads, moments and deflections.

### Beams - Supported at Both Ends - Continuous and Point Loads

Supporting loads, stress and deflections.

### British Universal Columns and Beams

Properties of British Universal Steel Columns and Beams.

### Drawbridge - Force and Moment vs. Elevation

Calculate the acting forces and moments when elevating drawbridges or beams.

### HE-A Steel Beams

Properties of HE-A profiled steel beams.

### HE-B Steel Beams

Properties of HE-B profiled steel beams.

### HE-M Steel Beams

Properties of HE-M profile steel beams.

### W-Beams - American Wide Flange Beams

Dimensions of American Wide Flange Beams ASTM A6 (or W-Beams) - Imperial units.

### Weight of Beams - Stress and Strain

Stress and deformation of vertical beams due to own weight.