Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

This is an AMP page - Open full page! for all features.

Laminar, Transitional and Turbulent Flow

Heat transfer, pressure and head loss in a fluid varies with laminar, transitional or turbulent flow.

Sponsored Links

There are in general three types of fluid flow in pipes

  • laminar
  • turbulent
  • transient

Laminar flow

Laminar flow generally happens when dealing with small pipes and low flow velocities. Laminar flow can be regarded as a series of liquid cylinders in the pipe, where the innermost parts flow the fastest, and the cylinder touching the pipe isn't moving at all.

Shear stress in a laminar flow depends almost only on viscosity - μ - and is independent of density - ρ.

Turbulent flow

In turbulent flow vortices, eddies and wakes make the flow unpredictable. Turbulent flow happens in general at high flow rates and with larger pipes.

Shear stress in a turbulent flow is a function of density - ρ.

Transitional flow

Transitional flow is a mixture of laminar and turbulent flow, with turbulence in the center of the pipe, and laminar flow near the edges. Each of these flows behave in different manners in terms of their frictional energy loss while flowing and have different equations that predict their behavior.

Turbulent or laminar flow is determined by the dimensionless Reynolds Number.

Reynolds Number

The  Reynolds number is important in analyzing any type of flow when there is substantial velocity gradient (i.e. shear.) It indicates the relative significance of the viscous effect compared to the inertia effect. The Reynolds number is proportional to inertial force divided by viscous force.

The flow is

  • laminar when Re < 2300
  • transient when 2300 < Re < 4000
  • turbulent when 4000 < Re
Sponsored Links

Related Topics

Related Documents

Sponsored Links

Share

Search Engineering ToolBox

  • the most efficient way to navigate the Engineering ToolBox!

SketchUp Extension - Online 3D modeling!

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp from the Sketchup Extension Warehouse!

Privacy

We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.

Topics

Unit Converters

Temperature

oC
oF


Load Calculator!

Length

m
km
in
ft
yards
miles
naut miles


Load Calculator!

Area

m2
km2
in2
ft2
miles2
acres


Load Calculator!

Volume

m3
liters
in3
ft3
us gal


Load Calculator!

Weight

kgf
N
lbf


Load Calculator!

Velocity

m/s
km/h
ft/min
ft/s
mph
knots


Load Calculator!

Pressure

Pa (N/m2)
bar
mm H2O
kg/cm2
psi
inches H2O


Load Calculator!

Flow

m3/s
m3/h
US gpm
cfm


Load Calculator!

3 10

This website use cookies. By continuing to browse you are agreeing to our use of cookies! Learn more