Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

This is an AMP page - Open full page! for all features.

Emissivity Coefficients common Products

Sponsored Links

The emissivity coefficient - ε - indicates the radiation of heat from a 'grey body' according the Stefan-Boltzmann Law, compared with the radiation of heat from a ideal 'black body' with the emissivity coefficient ε = 1.

The emissivity coefficient - ε - for some common materials can be found in the table below. Note that the emissivity coefficients for some products varies with the temperature. As a guideline the emmisivities below are based on  temperature 300 K.

Surface MaterialEmissivity Coefficient
- ε -
Alloy 24ST Polished 0.09
Alumina, Flame sprayed 0.8
Aluminum Commercial sheet 0.09
Aluminum Foil 0.04
Aluminum Commercial Sheet 0.09
Aluminum Heavily Oxidized 0.2 - 0.31
Aluminum Highly Polished 0.039 - 0.057
Aluminum Anodized 0.77
Aluminum Rough 0.07
Aluminum paint  0.27 - 0.67
Antimony, polished 0.28 - 0.31
Asbestos board  0.96
Asbestos paper 0.93 - 0.945
Asphalt 0.93
Basalt 0.72
Beryllium 0.18
Beryllium, Anodized 0.9
Bismuth, bright 0.34
Black Body Matt 1.00
Black lacquer on iron 0.875
Black Parson Optical 0.95
Black Silicone Paint 0.93
Black Epoxy Paint 0.89
Black Enamel Paint 0.80
Brass Dull Plate 0.22
Brass Rolled Plate Natural Surface 0.06
Brass Polished 0.03
Brass Oxidized 600oC 0.6
Brick, red rough 0.93
Brick, fireclay 0.75
Cadmium 0.02
Carbon, not oxidized 0.81
Carbon filament 0.77
Carbon pressed filled surface 0.98
Cast Iron, newly turned 0.44
Cast Iron, turned and heated 0.60 - 0.70
Cement 0.54
Chromium polished 0.058
Clay 0.91
Coal 0.80
Concrete 0.85
Concrete, rough 0.94
Concrete tiles 0.63
Cotton cloth 0.77
Copper electroplated 0.03
Copper heated and covered with thick oxide layer 0.78
Copper Polished 0.023 - 0.052
Copper Nickel Alloy, polished 0.059
Glass smooth 0.92 - 0.94
Glass, pyrex 0.85 - 0.95
Gold not polished 0.47
Gold polished 0.025
Granite, natural surface 0.96
Gravel 0.28
Gypsum 0.85
Ice smooth 0.966
Ice rough 0.985
Inconel X Oxidized 0.71
Iron polished 0.14 - 0.38
Iron, plate rusted red 0.61
Iron, dark gray surface 0.31
Iron, rough ingot 0.87 - 0.95
Lampblack paint 0.96
Lead pure unoxidized 0.057 - 0.075
Lead Oxidized 0.43
Limestone 0.90 - 0.93
Lime wash 0.91
Magnesia 0.72
Magnesite 0.38
Magnesium Oxide 0.20 - 0.55
Magnesium Polished 0.07 - 0.13
Marble White 0.95
Masonry Plastered 0.93
Mercury liquid 0.1
Mild Steel 0.20 - 0.32
Molybdenum polished 0.05 - 0.18
Mortar 0.87
Nickel, elctroplated 0.03
Nickel, polished 0.072
Nickel, oxidized 0.59 - 0.86
Nichrome wire, bright 0.65 - 0.79
Oak, planed 0.89
Oil paints, all colors 0.92 - 0.96
Paper offset 0.55
Plaster 0.98
Platinum, polished plate 0.054 - 0.104
Pine 0.84
Plaster board 0.91
Porcelain, glazed 0.92
Paint 0.96
Paper 0.93
Plaster, rough 0.91
Plastics 0.90 - 0.97
Polypropylene 0.97
Polytetrafluoroethylene (PTFE) 0.92
Porcelain glazed 0.93
Pyrex 0.92
PVC 0.91 - 0.93
Quartz glass 0.93
Roofing paper 0.91
Rubber, foam 0.90
Rubber, hard glossy plate 0.94
Rubber, natural hard 0.91
Rubber, natural oft 0.86
Salt 0.34
Sand 0.9
Sandstone 0.59
Sapphire 0.48
Sawdust 0.75
Silica 0.79
Silicon Carbide 0.83 - 0.96
Silver Polished 0.02 - 0.03
Snow 0.96 - 0.98
Soil 0.90 - 0.95
Steel Oxidized 0.79
Steel Polished 0.07
Stainless Steel, weathered 0.85
Stainless Steel, polished 0.075
Stainless Steel, type 301 0.54 - 0.63
Steel Galvanized Old 0.88
Steel Galvanized New 0.23
Thoria 0.28
Tile 0.97
Tin unoxidized 0.04
Titanium polished 0.19
Tungsten polished 0.04
Tungsten aged filament 0.032 - 0.35
Water (0 - 100oC) 0.95 - 0.963
Wood Beech, planned 0.935
Wood Oak, planned 0.885
Wood, Pine 0.95
Wrought Iron 0.94
Zinc Tarnished 0.25
Zinc polished 0.045
Sponsored Links

Related Topics

Material Properties

Material properties of gases, fluids and solids - densities, specific heats, viscosities and more.

Thermodynamics

Work, heat and energy systems.

Related Documents

Building Materials - Radiation Constants

The radiation constant is the product between the Stefan-Boltzmann constant and the emissivity constant for a material.

Sponsored Links

Share

Search Engineering ToolBox

  • the most efficient way to navigate the Engineering ToolBox!

SketchUp Extension - Online 3D modeling!

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp from the Sketchup Extension Warehouse!

Privacy

We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.

This website use cookies. By continuing to browse you are agreeing to our use of cookies! Learn more