Air Solubility in Water

Amount of air that can be dissolved in water - decrease with temperature - increase with pressure

The amount of air that can be dissolved in water increase with the system pressure and decrease with the temperature.

Deaeration

When fresh water is heated up, air bubbles start to form. The water can obviously not hold the dissolved air with increasing temperature. At 100 oC (212 oF) water starts to boil - the bubbles are formed by evaporated water or steam. If the water is cooled down and then again reheated, bubbles will not appear until the water starts to boil. The water is deaerated.

Solubility Ratio

The solubility of air in water can be expressed as a solubility ratio:

Sa = ma / mw         (1)

where

Sa = solubility ratio

ma = mass of air (lbm, kg)

mw = mass of water (lbm, kg)

Henry's Law

Solution of air in water follows Henry's Law - "the amount of air dissolved in a fluid is proportional with the pressure of the system" - and can be expressed as:

c =  pg / kH        (2)

where

c = solubility of dissolved gas

kH = proportionality constant depending on the nature of the gas and the solvent

pg = partial pressure of the gas

The solubility of oxygen in water is higher than the solubility of nitrogen. Air dissolved in water contains approximately 35.6% oxygen compared to 21% in air.

Solubility of Air in Water

Solubility of air in water - expressed as ratio of absorbed air volume to water volume:

Temperature (oF) Gauge Pressure (psig)
0 20 40 60 80 100
40 0.0258 0.0613 0.0967 0.1321 0.1676 0.2030
50 0.0223 0.0529 0.0836 0.1143 0.1449 0.1756
60 0.0197 0.0469 0.0742 0.1014 0.1296 0.1559
70 0.0177 0.0423 0.0669 0.0916 0.1162 0.1408
80 0.0161 0.0387 0.0614 0.0840 0.1067 0.1293
90 0.0147 0.0358 0.0589 0.0750 0.0990 0.1201
100 0.0136 0.0334 0.0536 0.0730 0.0928 0.1126
110 0.0126 0.0314 0.0501 0.0699 0.0877 0.1065
120 0.0117 0.0296 0.0475 0.0654 0.0833 0.1012
130 0.0107 0.0280 0.0452 0.0624 0.0796 0.0968
140 0.0098 0.0265 0.0432 0.0598 0.0765 0.0931
150 0.0089 0.0251 0.0413 0.0574 0.0736 0.0898
160 0.0079 0.0237 0.0395 0.0553 0.0711 0.0869
170 0.0068 0.0223 0.0378 0.0534 0.0689 0.0844
180 0.0055 0.0208 0.0361 0.0514 0.0667 0.0820
190 0.0041 0.0192 0.0344 0.0496 0.0647 0.0799
200 0.0024 0.0175 0.0326 0.0477 0.0628 0.0779
210 0.0004 0.0155 0.0306 0.0457 0.0607 0.0758

Example - Calculating Air Dissolved in Water

Air dissolved in water can be calculated with Henry's law.

Henry Law's Constants at a system temperature of 25oC (77oF)

  • Oxygen - O2 : 756.7 atm/(mol/litre)
  • Nitrogen - N2 : 1600 atm/(mol/litre)

Molar Weights

  • Oxygen - O2 : 31.9988 g/mol
  • Nitrogen - N2 : 28.0134 g/mol

Partial fraction in Air

  • Oxygen - O2 : ~ 0.21
  • Nitrogen - N2 : ~ 0.79

Oxygen dissolved in the Water at atmospheric pressure can be calculated as:

co = (1 atm) 0.21 / (756.7 atm/(mol/litre)) (31.9988 g/mol)

= 0.0089 g/litre

~ 0.0089 g/kg

Nitrogen dissolved in the Water at atmospheric pressure can be calculated as:

cn = (1 atm) 0.79 / (1600 atm/(mol/litre)) (28.0134 g/mol)

= 0.0138 g/litre

~ 0.0138 g/kg

Since air is the sum of Nitrogen and Oxygen:

ca = (0.0089 g/litre) + (0.0138 g/litre)

= 0.0227 g/litre

~ 0.023 g/kg

Calculating air dissolved in water for some other pressures at temperature 25oC (77oF) can be summarized to:

Pressure, abs (atm) 1 2 3 4 5 6
Dissolved Air in Water (25oC) (g/kg) 0.023 0.045 0.068 0.091 0.114 0.136

Dissolved Oxygen in Fresh Water

oxygen solubility in fresh water

Deariation

For maximum deaeration the water should be heated up to 212 oF (100 oC) at atmospheric pressure. This is common in steam systems where fresh water is supplied to the system through an heated deaeration tower on the top of the condensate receiver tank.

It is also common to install deaeration devices on the hot sides of heat exchangers in heating distribution systems to force the dissolved air out of the system.

Note! Since the maximum deaeration is limited by the minimum static pressure and maximum temperature in the system - the best deaeration result is achieved in positions at the hottest and highest levels of the systems - and/or at the suction side of pumps.

Related Topics

  • Material Properties - Material properties - density, heat capacity, viscosity and more - for gases, fluids and solids

Related Documents

Search the Engineering ToolBox

- "the most efficient way to navigate the Engineering ToolBox!"

Engineering ToolBox - SketchUp Edition - Online 3D modeling!

3D Engineering ToolBox - draw and model technical applications

Engineering ToolBox - SketchUp Edition - add standard and customized parametric components - like flange beams, lumbers, piping and more - to your SketchUp model - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro. Add from the Sketchup Extension Warehouse!

Translate the Engineering ToolBox!
About the Engineering ToolBox!