Volume and Surface of some Common Solids

Surface and volume of solids like rectangular prism, cylinder, pyramid, cone and sphere - online calculator

Cube

 

cube

Volume

V = a3  (1)

where

V = volume (m3, ft3)

a = side (m, ft)

Surface Area

A0 = 6 a2  (1b)

where

A0 = surface area (m2, ft2)

Diagonal

d = a 31/2  (1c)

where

d = innside diagonal (m, ft)

Diagonal of Cube Face

ds = a 21/2  (1d)

Cuboid - Square Prism

rectangular prism volume surface area

Volume

V = a b c         (2)

where

V = volume of solid (m3, ft3)

a = length of rectangular prism (m, ft)

b = width of rectangular prism (m, ft)

c = height of rectangular prism (m, ft)

Diagonal

d =  (a2 + b2 + c2)1/2         (2b)

Surface Area

A0 = 2 (a b + a c + b c)         (2c)

where

A0 = surface area of solid (m2, ft2)

length

width

height

Volume:  

Surface:  

Parallelepiped

parallelepiped volume surface area

Volume

V = A1 h  (3a)

where

A1 = side area (m2, ft2)

Related Sketchup Components from The Engineering ToolBox Engineering Toolbox Apps

  • Engineering ToolBox Sketchup - Common Geometric Figures Geometric Figures - Cylinders, Boxes, Cones, Planes, Spheres, Lines, Curves and more..

- free Engineering ToolBox plugin for use with the amazing Sketchup 3D drawing application.

Cylinder

cylinder volume surface area

Volume

V = π r2 h = (π / 4) d2         (4a)

where

d = diameter of cylinder (m, ft)

r = radius of cylinder (m, ft)

h = height of cylinder (m, ft)

Surface

A = 2 π r h + 2 π r2         (4b)

radius

height

Volume:  

Surface:  

Hollow Cylinder

hollow cylinder volume surface area

Volume

V = π/4 h (D2 - d2)   (5)

Pyramid

pyramid volume surface area

Volume

V = 1/3 h A1         (6)

where

A1 = area of base (m2, ft2)

h = perpendicular height of pyramid (m, ft)

Surface

A = ∑ sum of areas of triangles forming sides + Ab         (6b)

where

the surface areas of the triangular faces will have different formulas for different shaped bases

area of base

perpendicular height

Volume:  

Frustum of Pyramid

frustum of pyramid volume surface area

Volume

V = h/3 ( A1 + A2 + (A1 A2)1/2)   (7)

Cone

cone volume surface area

Volume

V = 1/3 π r2 h         (8a

where

r = radius of cone base (m, ft)

h = height of cone (m, ft)

Surface

A = π r l + π r2         (8b)

where

l = (r2 + h2)1/2 = length of cone side (m, ft)

radius

height

Volume:  

Surface:  

Side

m = (h2 + r2)1/2   (8c)

 

A2 / A1 = x2 / h2   (8d)

Frustum of Cone

frustum of cone volume surface area

Volume

V = π/12 h (D2 + D d + d2)   (9a)

m = ( ( (D - d) / 2 )2 + h2)1/2    (9c)

Sphere

sphere volume surface area

Volume

V = 4/3 π r3  

= 1/6 π d3     (10a)

where

r = radius of sphere (m, ft)

Surface

A = 4 π r2 

= π d2     (10b)

radius

Volume:  

Surface:  

Spheres with Fractional Diameters - Surface Area and Volume

Fraction Diameter
- d –
(inch)
Decimal Diameter
- d –
(inch)
Decimal Radius
– r –
(inch)
Surface Area
- A –
(in2)
Volume
- V -
(in3)
1/64 0.015625 0.007813 0.0007670 0.0000020
1/32 0.031250 0.015625 0.0030680 0.0000160
3/64 0.046875 0.023438 0.0069029 0.0000539
1/64 0.062500 0.031250 0.0122718 0.0001278
5/64 0.078125 0.039063 0.0191748 0.0002497
3/32 0.093750 0.046875 0.0276117 0.0004314
7/64 0.109375 0.054688 0.0375825 0.0006851
1/8 0.125000 0.062500 0.0490874 0.0010227
9/64 0.140625 0.070313 0.0621262 0.0014561
5/32 0.156250 0.078125 0.0766990 0.0019974
11/64 0.171875 0.085938 0.0928058 0.0026585
3/16 0.187500 0.093750 0.1104466 0.0034515
13/64 0.203125 0.101563 0.1296214 0.0043882
7/32 0.218750 0.109375 0.1503301 0.0054808
15/64 0.234375 0.117188 0.1725728 0.0067411
1/4 0.250000 0.125000 0.1963495 0.0081812
17/64 0.265625 0.132813 0.2216602 0.0098131
9/32 0.281250 0.140625 0.2485049 0.0116487
19/64 0.296875 0.148438 0.2768835 0.0137000
5/16 0.312500 0.156250 0.3067962 0.0159790
21/64 0.328125 0.164063 0.3382428 0.0184977
11/32 0.343750 0.171875 0.3712234 0.0212680
23/64 0.359375 0.179688 0.4057379 0.0243020
3/8 0.375000 0.187500 0.4417865 0.0276117
25/64 0.390625 0.195313 0.4793690 0.0312089
13/32 0.406250 0.203125 0.5184855 0.0351058
27/64 0.421875 0.210938 0.5591360 0.0393142
7/16 0.437500 0.218750 0.6013205 0.0438463
29/64 0.453125 0.226563 0.6450389 0.0487139
15/32 0.468750 0.234375 0.6902914 0.0539290
31/64 0.484375 0.242188 0.7370778 0.0595037
1/2 0.500000 0.250000 0.7853982 0.0654498
33/64 0.515625 0.257813 0.8352525 0.0717795
17/32 0.531250 0.265625 0.8866409 0.0785047
35/64 0.546875 0.273438 0.9395632 0.0856373
9/16 0.562500 0.281250 0.9940196 0.0931893
37/64 0.578125 0.289063 1.0500098 0.1011728
19/32 0.593750 0.296875 1.1075341 0.1095997
39/64 0.609375 0.304688 1.1665924 0.1184820
5/8 0.625000 0.312500 1.2271846 0.1278317
41/64 0.640625 0.320313 1.2893109 0.1376608
21/32 0.656250 0.328125 1.3529711 0.1479812
43/64 0.671875 0.335938 1.4181652 0.1588050
11/16 0.687500 0.343750 1.4848934 0.1701440
45/64 0.703125 0.351563 1.5531555 0.1820104
23/32 0.718750 0.359375 1.6229517 0.1944161
47/64 0.734375 0.367188 1.6942818 0.2073730
3/4 0.750000 0.375000 1.7671459 0.2208932
49/64 0.765625 0.382813 1.8415439 0.2349887
25/32 0.781250 0.390625 1.9174760 0.2496714
51/64 0.796875 0.398438 1.9949420 0.2649532
13/16 0.812500 0.406250 2.0739420 0.2808463
53/64 0.828125 0.414063 2.1544760 0.2973626
27/32 0.843750 0.421875 2.2365440 0.3145140
55/64 0.859375 0.429688 2.3201459 0.3323126
7/8 0.875000 0.437500 2.4052819 0.3507703
57/64 0.890625 0.445313 2.4919518 0.3698991
29/32 0.906250 0.453125 2.5801557 0.3897110
59/64 0.921875 0.460938 2.6698936 0.4102180
15/16 0.937500 0.468750 2.7611654 0.4314321
61/64 0.953125 0.476563 2.8539713 0.4533652
31/32 0.968750 0.484375 2.9483111 0.4760294
63/64 0.984375 0.492188 3.0441849 0.4994366
1 1.000000 0.500000 3.1415927 0.5235988

Zone of a Sphere

zone of a sphere volume surface area

V = π/6 h (3a2 + 3b2 + h)    (11a)

Am = 2 π r h    (11b)

A0 = π (2 r h + a2 + b2)   (11c)

Segment of a Sphere

segment of a sphere volume surface area

V = π/6 h (3/4 s2 + h2

=   π h2 (r - h/3)    (12a)

Am = 2 π r h  

π/4 (s2 + 4 h2) (12b)

Sector of a Sphere

sector of a sphere volume surface area

V = 2/3 π r2 h    (13a)

A0 = π/2 r (4 h + s)   (13b)

Sphere with Cylindrical Boring

sphere cylindrical boring volume surface area

V = π/6  h3    (14a)

A0 = 4 π ((R + r)3 (R - r))1/2  

= 2 π h (R + r)  (14b)

h = 2 (R2 - r2)1/2    (14c)

Sphere with Conical Boring

sphere conical boring volume surface area

V = 2/3 π R2 h   (15a)

A0 = 2 π R (h + (R2 - h2/4)1/2)   (15b)

h = 2 (R2 - r2)1/2    (15c)

Torus

torus volume surface area

V = π2/4 D d2    (16a)

A0 = π2 D d   (16b)

Sliced Cylinder

sliced cylinder volume surface area

V = π/4 d2 h   (17a)

Am = π d h (17b)

A0 = π r (h1 + h2 + r + (r2 + (h1 - h2)2/4)1/2)   (17c)

Ungula

ungula volume surface area

V = 2/3 r2 h   (18a)

Am = 2 r h (18b)

A0 = Am + π/2 r2 + π/2 r (r2 + h2)1/2 (18c)

Barrel

barrel volume surface area

V ≈ π/12 h (2 D2 + d2)   (19a)

Related Topics

  • Basics - Basic Information as SI-system, Unit converters, Physical constants
  • Mathematics - Mathematical rules and laws - areas, volumes, exponents, trigonometric functions and more

Related Documents

  • Tank Volume - Volume of cylindrical (round) tanks - US. gallons per foot of dept or length
  • Volume Units Converter - Convert between common volume units like cubic meters, cubic feet, cubic inches and many more

Tag Search

  • en: volume surface solids rectangular prosm cylinder pyramid cone sphere
  • es: sólidos superficiales volumen prosm rectangular esfera cono pirámide cilindro
  • de: Volumen Feststoffe rechteckigen Fläche prosm Zylinder Pyramide Kegel Kugel

Search the Engineering ToolBox

- "Search is the most efficient way to navigate the Engineering ToolBox!"

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your SketchUp model with the Engineering ToolBox - SketchUp Extension/Plugin - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro. Add the Engineering ToolBox extension to your SketchUp from the Sketchup Extension Warehouse!

Translate the Engineering ToolBox!
About the Engineering ToolBox!

close