# 12 Volt Electric Wire - Length and Current

## Maximum length of copper wire with 2% voltage drop

Sponsored Links

### Maximum Wire Length Calculator

The calculator can be used to calculate maximum length of copper wires.

* Voltage (volts)*

* Current (amps)*

* Cross sectional area (mm ^{2}) - AWG Wire Gauge *

* Voltage Drop (%)*

Maximum one-way length for copper conductor from power source to load in a *12 volt* system with *2%* voltage drop is indicated below:

### Wire Length - feet

### Wire Length - meter

- double the distance if 4% loss is acceptable
- multiply distance by 2 for 24 volts
- multiply distance by 4 for 48 volts

### Example - Maximum Length of Wire

The current to a light bulb with power *50 W* can be calculated with Ohm's law

* I = P / U (1)*

*where*

*I = current (amps)*

*P = power (watts)*

*U = voltage (volts)*

*(1)* with values* *

* I = (50 W) / (12 V)*

* = 4.2 A*

From the diagram above the maximum length of the wire should not exceed approximately *8 m* for gauge *#10 (5.26 mm ^{2})*. By increasing the size of the wire to gauge

*#2*

*(33.6 mm*the maximum length is limited to approximately

^{2})*32 m*.

### Example - Calculate Maximum Wire Length

The electrical resistance in a copper conductor with cross sectional area *6 mm ^{2} *is

*2.9 10*. This is close to wire gauge 9.

^{-3 }ohm/mIn a *12V* system with maximum *2%* voltage drop - and current *10 amps* - the maximum length of the wire can be calculated with Ohm's law

*U = R L I (2)*

*where *

*R = electrical resistance (ohm/m)*

*L = length of wire (m)*

*(2)* rearranged for *L*

*L = U / (R I) (2b)*

*(2b)* with values

*L = (12 V) 0.02 / [( 2.9 10^{-3} ohm/m) (10 amps)]*

* = 8.3 m*

## Related Topics

Sponsored Links

## Related Documents

Sponsored Links